TensorFlow Lite学习笔记

本文是TensorFlow Lite学习笔记,涵盖推理、参数类型、生成TFlite图的优化方法、重定义数据集、tflite转换器及特定设备特殊要求指定等内容。如推理时可指定线程数,部分参数类型和优化方法处于实验阶段。
部署运行你感兴趣的模型镜像

TensorFlow Lite学习笔记(参考Module: tf.lite  |  TensorFlow Lite (google.cn)

 

总共分为六块:

Interpreter: 推理

model_content:

num_threads:tflite的卷积推理支持多线程,这里可以指定线程数

tf.lite.Interpreter(
    model_path=None, model_content=None, experimental_delegates=None,
    num_threads=None
)

 

OpsSet: 参数类型

  • EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8
  • SELECT_TF_OPS
  • TFLITE_BUILTINS
  • TFLITE_BUILTINS_INT8

TFLITE_BUILTINS,SELECT_TF_OPS, EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 都是在实验阶段,不建议使用

TFLITE_BUILTINS_INT8要用的化需要自定义数据集

 

Optimize: 生成TFlite图的时候优化方法

  • DEFAULT:
  • OPTIMIZE_FOR_LATENCY:优化算力
  • OPTIMIZE_FOR_SIZE:优化模型大小

 

RepresentativeDataset: 重定义数据集

 

TFLiteConverter: tflite转换器

支持

# Converting a SavedModel to a TensorFlow Lite model.
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()

#keras model xxx.h5
# Converting a tf.Keras model to a TensorFlow Lite model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Converting ConcreteFunctions to a TensorFlow Lite model.
converter = tf.lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()

TargetSpec: 对于特定设备的特殊要求指定

supported_ops:比如二进制,正在实验阶段

supported_types:设备上支持的类型

tf.lite.TargetSpec(
    supported_ops=None, supported_types=None
)

 

 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值