C++力扣1 两数之和(简单)

输入:nums = [2, 7, 11, 15],target = 9

输出:[0, 1]

题意:从nums中找出两个元素,它们的和等于target,然后返回它们的下标

1、暴力法

写嵌套循环,让每一个元素和其他元素分别相加,判断和是否等于target,等于就返回下标。

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        for(int i=0; i<nums.size(); i++){
            for(int j=i+1; j<nums.size(); j++){
                if(nums[i] + nums[j] == target){
                    return {i, j};
                }
            }
        }
        return {};
    }
};

2、使用find方法

遍历nums的每一个元素,用find方法从剩下的元素中找匹配的加数,找到就返回下标。

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        // 遍历nums
        for(int i=0; i<nums.size(); i++){
            // 寻找另一个数
            auto it = find(nums.begin()+i+1, nums.end(), target-nums[i]);
            // 如果找到另一个数
            if(it != nums.end()){
                // 迭代器转化为下标
                int other = it-nums.begin();
                return {i, other};
            }
        }
        return {};
    }
};

3、使用unordered_map,即哈希表

遍历nums的每一个元素,从哈希表中找匹配的加数,找到则返回下标,找不到就存入哈希表。

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        // 声明无序哈希容器
        unordered_map<int, int> hash;
        // 遍历nums
        for(int i=0; i<nums.size(); i++){
            // 在哈希表中寻找另一个数
            auto it = hash.find(target-nums[i]);
            // 如果找到另一个数
            if(it != hash.end()){
                return {i, it->second};
            }
            // 如果没找到,将当前遍历元素存入哈希表
            hash[nums[i]] = i;
        }
        return {};
    }
};

注意:

1、vector的初始化方法,举例:vector<int> nums{1, 2, 3}。

2、迭代器转下标的语法,举例:int index = it - nums.begin()。

3、向量的find方法的时间复杂度为O(n),哈希表的find方法的时间复杂度为O(1)。因为哈希表在查找的时候是通过内部的哈希函数进行计算的,不像向量的find是单纯地遍历元素。

LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值