概率图模型-HMM(隐马尔可夫模型)

1.引言

HMM隐马尔可夫模型是一种经典的概率图模型,是动态贝叶斯网络,即是一种有向图,是一种生成模型。它和GMM(高斯混合模型),朴素贝叶斯模型,最大熵马尔科夫模型,条件随机场模型之间的联系比较多。它较GMM和NB优化,但是由于自身一些不合理的假设。这也就产生了后面的模型,MEMM(最大熵马尔科夫模型)和CRF(条件随机场),这两个模型都克服了HMM的假设,使得问题变得合理化。概率图模型不同于传统的统计机器学习方法,传统的统计机器学习的三个基本问题是关于模型,策略,还有算法。可以看成是一个优化已经构建的损失函数的问题。而概率图模型则不同,它包括了learning还有inference这两个过程,是一个积分问题。HMM广泛运用于自然语言处理中的机器翻译,词性标注,命名体识别等等。。。它的缺陷也是十分明显的,模型较为简单,因为假设过多,包括了齐次马尔科夫假设(HMM 的任一时刻 t 的某一隐状态只依赖于其前一时刻的隐状态,与其它时刻的隐状态及观测变量无关)和观测独立性假设(任一时刻的观测变量只依赖于该时刻的马尔科夫链的隐状态变量,与其他观测及隐状态无关)。

研究HMM一般是从三个问题出发,evaluation(概率计算问题),learning(参数估计问题),还有decoding(求解最优隐状态序列)。

首先先对HMM的一些参数进行一些说明,包括观测变量O,其值域为V,隐状态变量I,其值域为Q。π为初始概率矩阵,A为状态转移矩阵,表示从隐状态i转移到隐状态j的概率大小。B为发射矩阵,表示从隐状态j到观测变量k的概率。而模型参数 λ= (A, B, π)。

2.三个问题

1.evaluation问题

evaluation问题是一个概率计算问题,是在给定λ的情况下求解P(O|λ)的问题。所以这就涉及到了一个问题,如何计算?一般而言有两种方法。

第一种,暴力求解,如下图所示:

这种方法的缺点很明显,就是时间复杂度太大,达到指数级。

第二种就是前向和后向算法,这两种算法比较类似,一个从前往后算,一个从后往前算,都要预先定义一个函数。找出这个函数的递推关系,就能求解P(O|λ),且时间复杂度成功降到了O(N*N)如下图所示:

2.learning问题

evaluation问题是在给定λ的情况下,求解概率,而learning问题则是求解λ,而这就要涉及到一个很著名的算法:EM算法,被称为数据挖掘十大经典算法之一。简单的来说,就是先将HMM的参数带入到EM公式,得到关于所求变量的方程,再加上概率和为1的条件,用我们平时所用的求条件极值的方法即可求解各个参数,具体求解方法如下图所示:

3.decoding问题

decoding问题是一个求解最优隐状态序列的问题,具体要用到维特比算法,一个动态规划算法,可以这样理解,每次先固定前面还未求解的前n-1个隐状态变量,根据现有条件求解第n个状态变量的最优值,由此迭代,达到全局最优,具体求解过程如下图所示:

3.总结

所以总的来说弄懂HMM,就把HMM的一个模型λ= (A, B, π),两个假设,还有三个问题弄清楚就OK了,HMM存在的问题,后面介绍的CRF(条件随机场)会一一解决。

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值