是时候停止vibe,看清AI智能体的本质了!

 点击下方“JavaEdge”,选择“设为星标”

第一时间关注技术干货!

免责声明~

任何文章不要过度深思!

万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」

不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人

怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」












































0 前言

AI快速发展大时代,一些术语几乎每周甚至每天都会被赋予新含义,让人一时失措,忽略很多基本原则。

本文从其中一个术语开始——智能体(Agent)

1 2025:智能体之年

2025的确是[“智能体之年”]。近年LLM飞速发展带来文本、图像甚至视频生成的惊天之力,但如今关注点已从“生成”转向能在数字或现实世界中采取行动的系统。

人们的氛围感兴奋可以理解。AI价值会随其“可行动性”呈指数级增长。尽管已有多年的软件自动化,但大多系统仍是静态且脆弱。如能将它们与更灵活的决策能力结合,将带来巨大突破。但真正做到这点不易!

时至今日,仍有人会问:“到底智能体是个啥?”

2 智能体定义

不同机构对“智能体”的定义并不一:

  • OpenAI 的定义

  • IBM 的定义

  • Simon Willison 在 AI 工程师大会上收集的六种不同定义

都有其合理性,但也都存在局限性。智能体的定义其实早有,并且还有专门研究多智能体系统的学术领域。

3 过去的智能体定义

回顾历史,“智能体”从无固定定义。学术研究中的智能体可以是:

  • 完全具象的机器人,能探索其环境

  • 模拟市场中的独立行为者,以预测价格动态

  • 具备内部知识表示和世界模型,并用标准化智能体语言进行通信的软件系统

  • 由多个简单个体组成的群体,可以通过自组织实现复杂行为

4 现代智能体定义

由于AI井喷式发展,智能体定义越来越多。但许多定义要么过于复杂,要么忽略一些关键点。看如下常见智能体定义,并分析可能问题:

  • “智能体是一个具备行为指令、可访问扩展能力的工具,并在动态生命周期中运行的模型。”(智能体一定需要指令吗?一定是个“模型”吗?)

  • “一个能够自主学习、适应和执行分配目标的应用程序。”(智能体一定要会学习吗?目标一定要被分配吗?)

  • “能够执行长期、开放式任务的AI系统。”(任务必须长期吗?必须要完成任务吗?)

  • “智能体 = LLM + 记忆 + 规划 + 工具 + While 循环。”(一定需要记忆吗?一定需要LLM吗?或者一定要用While循环吗?)

  • “一个可以代表用户做出重要决策的系统。”(它必须代表用户吗?能否代表自己?人类是否也是智能体?)

  • “应用程序的智能体化程度越高,LLM对控制流程的决定权越大。”(智能体必须依赖LLM吗?智能体是一个渐变的概念还是一个二元状态?)

  • “一个执行复杂、多步骤操作的AI组件,这些操作以前需要人类完成。”(任务必须是复杂的吗?如果AI执行的是人类无法完成的任务呢?杀毒软件算智能体吗?)

并非杠精批评这些定义,而是强调:“智能体”这个概念本就难定义

历史上的智能体定义过于简化,因为限制于生产力发展,很难想象软件系统能拥有如今LLM所具备能力。而现代定义则存在相反问题,过于依赖LLM,认为智能体一定要具备高度复杂功能。

5 “智能体”本质含义

可基于过去的研究成果和现代技术发展,归纳较本质的定义:

★ 

智能体是一个能够自主决策并采取行动,以在其环境中实现一个或多个目标的系统。

该定义涵盖:

  • 软件智能体(Software Agent):如自动化脚本、推荐系统

  • AI智能体(AI Agent):如大模型驱动的聊天机器人、自动驾驶系统

  • 生物智能体(Biological Agent):如咬坏你家电线的老鼠😅

5.1 该定义的关键

  1. 它是一个系统——智能体是一个独立实体

  2. 它是自主的——智能体可根据某些标准决定是否行动

  3. 它具备行动能力——智能体可以在环境中执行操作,如采集信息、影响物理世界等

  4. 它存在于环境中——环境可以是物理的(现实世界),也可以是数字的(如网络)

  5. 它有目标——目标可以是内置的(预设),可以由外部分配,也可能动态生成

以下两点虽非严格必要,但大多有用智能体都具备:

  • 长期运行性——智能体通常长期存在,而不仅是执行一次任务后消失

  • 感知反馈机制——它通常需监测环境,以便在需要时调整行动

6 “多智能体系统”又是啥?

很多人把某些任务拆分到多个系统,就称“多智能体系统”,但实际上,这些系统只是多个组件协同工作,并非真正多智能体系统。

一个真正的多智能体系统,应该满足:

  1. 每个智能体都是自主的,而不仅仅是执行上一级任务的命令。

  2. 智能体之间可以产生冲突或竞争,而不仅仅是流水线式的合作。

如多个AI可共享相同资源库,而它们的交互方式可能导致竞争或协作,这才是真多智能体系统。

7 你真需要智能体吗?

如你在构建可“采取行动”的AI系统,那大概率已在构建智能体。了解智能体的本质定义,可助你更好设计系统,并考虑环境、目标、行动能力和自主性等关键因素。

诸君2025智能体工程(AgentEngineering)之旅愉快!

本文已收录在Github Java-Interview-Tutorial,关注我,紧跟本系列专栏文章,咱们下篇再续!

  • 🚀 魔都架构师 | 全网30W技术追随者

  • 🔧 大厂分布式系统/数据中台实战专家

  • 🏆 主导交易系统亿级流量调优 & 车联网平台架构

  • 🧠 AIGC应用开发先行者 | 区块链落地实践者

  • 🌍 以技术驱动创新,我们的征途是改变世界!

  • 👉 实战干货:编程严选网

关注我,紧跟本系列专栏文章,咱们下篇再续!

加我好友,一起AI探索交流:

写在最后

编程严选网http://www.javaedge.cn/

专注分享AI时代下软件开发全场景最新最佳实践,点击文末【阅读原文】即可直达~

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
内容概要:本文深入剖析了2025年全球感知技术的十大发展趋势,涵盖多模态感知融合、3D感知与空间计算、脑机接口中的感知反馈技术、5G/6G赋能的超低延迟感知、语音与情感识别的高级化、生物感知与数字健康、环境感知与自适应智能、增强现实(AR)与触觉反馈技术、气味与化学感知、量子感知与极端条件测量。文章详细介绍了每项技术的技术原理、关键算法、实现方式、商业案例及未来前景,强调了感知技术在智慧城市、自动驾驶、智慧医疗、工业自动化等领域的深刻影响。报告指出,感知技术正从单一传感模式向多模态融合、从二维数据向三维空间重建、从传统网络通信向超低延迟和高可靠性网络升级,实现全场景、全维度的智能感知。; 适合人群:对感知技术感兴趣的科技爱好者、研究人员、决策者、企业管理层和投资人。; 使用场景及目标:①了解感知技术的最新进展和未来发展方向;②为技术研究提供全面、深入的参考;③为商业应用提供具体的案例和前景分析;④推动跨领域协同创新,构建开放共赢的产业生态。; 其他说明:报告基于近年来技术研发的最新进展、业界前沿的技术路线以及各大科技企业在商业落地方面的丰富实践。随着感知技术的不断成熟,数据隐私与安全保护问题也需高度重视,以确保技术进步与社会伦理和谐统一。未来,感知技术将成为推动社会进步和产业升级的重要力量,为实现万物互联、智慧决策和智能体验提供无限可能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值