点击下方“JavaEdge”,选择“设为星标”
第一时间关注技术干货!
免责声明~
任何文章不要过度深思!
万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」;
不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人。
怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」
0 前言
AI快速发展大时代,一些术语几乎每周甚至每天都会被赋予新含义,让人一时失措,忽略很多基本原则。
本文从其中一个术语开始——智能体(Agent)。
1 2025:智能体之年
2025的确是[“智能体之年”]。近年LLM飞速发展带来文本、图像甚至视频生成的惊天之力,但如今关注点已从“生成”转向能在数字或现实世界中采取行动的系统。
人们的氛围感兴奋可以理解。AI价值会随其“可行动性”呈指数级增长。尽管已有多年的软件自动化,但大多系统仍是静态且脆弱。如能将它们与更灵活的决策能力结合,将带来巨大突破。但真正做到这点不易!
时至今日,仍有人会问:“到底智能体是个啥?”
2 智能体定义
不同机构对“智能体”的定义并不一:
OpenAI 的定义
IBM 的定义
Simon Willison 在 AI 工程师大会上收集的六种不同定义
都有其合理性,但也都存在局限性。智能体的定义其实早有,并且还有专门研究多智能体系统的学术领域。
3 过去的智能体定义
回顾历史,“智能体”从无固定定义。学术研究中的智能体可以是:
完全具象的机器人,能探索其环境
模拟市场中的独立行为者,以预测价格动态
具备内部知识表示和世界模型,并用标准化智能体语言进行通信的软件系统
由多个简单个体组成的群体,可以通过自组织实现复杂行为
4 现代智能体定义
由于AI井喷式发展,智能体定义越来越多。但许多定义要么过于复杂,要么忽略一些关键点。看如下常见智能体定义,并分析可能问题:
“智能体是一个具备行为指令、可访问扩展能力的工具,并在动态生命周期中运行的模型。”(智能体一定需要指令吗?一定是个“模型”吗?)
“一个能够自主学习、适应和执行分配目标的应用程序。”(智能体一定要会学习吗?目标一定要被分配吗?)
“能够执行长期、开放式任务的AI系统。”(任务必须长期吗?必须要完成任务吗?)
“智能体 = LLM + 记忆 + 规划 + 工具 + While 循环。”(一定需要记忆吗?一定需要LLM吗?或者一定要用While循环吗?)
“一个可以代表用户做出重要决策的系统。”(它必须代表用户吗?能否代表自己?人类是否也是智能体?)
“应用程序的智能体化程度越高,LLM对控制流程的决定权越大。”(智能体必须依赖LLM吗?智能体是一个渐变的概念还是一个二元状态?)
“一个执行复杂、多步骤操作的AI组件,这些操作以前需要人类完成。”(任务必须是复杂的吗?如果AI执行的是人类无法完成的任务呢?杀毒软件算智能体吗?)
并非杠精批评这些定义,而是强调:“智能体”这个概念本就难定义。
历史上的智能体定义过于简化,因为限制于生产力发展,很难想象软件系统能拥有如今LLM所具备能力。而现代定义则存在相反问题,过于依赖LLM,认为智能体一定要具备高度复杂功能。
5 “智能体”本质含义
可基于过去的研究成果和现代技术发展,归纳较本质的定义:
★智能体是一个能够自主决策并采取行动,以在其环境中实现一个或多个目标的系统。
”
该定义涵盖:
软件智能体(Software Agent):如自动化脚本、推荐系统
AI智能体(AI Agent):如大模型驱动的聊天机器人、自动驾驶系统
生物智能体(Biological Agent):如咬坏你家电线的老鼠😅
5.1 该定义的关键
它是一个系统——智能体是一个独立实体
它是自主的——智能体可根据某些标准决定是否行动
它具备行动能力——智能体可以在环境中执行操作,如采集信息、影响物理世界等
它存在于环境中——环境可以是物理的(现实世界),也可以是数字的(如网络)
它有目标——目标可以是内置的(预设),可以由外部分配,也可能动态生成
以下两点虽非严格必要,但大多有用智能体都具备:
长期运行性——智能体通常长期存在,而不仅是执行一次任务后消失
感知反馈机制——它通常需监测环境,以便在需要时调整行动
6 “多智能体系统”又是啥?
很多人把某些任务拆分到多个系统,就称“多智能体系统”,但实际上,这些系统只是多个组件协同工作,并非真正多智能体系统。
一个真正的多智能体系统,应该满足:
每个智能体都是自主的,而不仅仅是执行上一级任务的命令。
智能体之间可以产生冲突或竞争,而不仅仅是流水线式的合作。
如多个AI可共享相同资源库,而它们的交互方式可能导致竞争或协作,这才是真多智能体系统。
7 你真需要智能体吗?
如你在构建可“采取行动”的AI系统,那大概率已在构建智能体。了解智能体的本质定义,可助你更好设计系统,并考虑环境、目标、行动能力和自主性等关键因素。
诸君2025智能体工程(AgentEngineering)之旅愉快!
本文已收录在Github Java-Interview-Tutorial,关注我,紧跟本系列专栏文章,咱们下篇再续!
🚀 魔都架构师 | 全网30W技术追随者
🔧 大厂分布式系统/数据中台实战专家
🏆 主导交易系统亿级流量调优 & 车联网平台架构
🧠 AIGC应用开发先行者 | 区块链落地实践者
🌍 以技术驱动创新,我们的征途是改变世界!
👉 实战干货:编程严选网
关注我,紧跟本系列专栏文章,咱们下篇再续!
加我好友,一起AI探索交流:
写在最后
编程严选网:
http://www.javaedge.cn/
专注分享AI时代下软件开发全场景最新最佳实践,点击文末【阅读原文】即可直达~