
图像处理知识
整理和收集一些经典,常用,容易混淆的图像处理知识
AI未来
这个作者很懒,什么都没留下…
展开
-
Pytorch中保存图片的方式
1、tensor直接保存#!/usr/bin/env python# _*_ coding:utf-8 _*_import torchfrom torchvision import utils as vutils def save_image_tensor(input_tensor: torch.Tensor, filename): """ 将tensor保存为图片 :param input_tensor: 要保存的tensor :param filena转载 2020-11-23 19:37:33 · 11925 阅读 · 4 评论 -
关于图像变换的总结(仿射变换,刚体变换等)
一、常用的图像变换模型:刚性变换、仿射变换、透视变换和非线形变换等。如下图所示:进一步理解(1) 刚体变换 如果一幅图像中的两点间的距离经变换到另一幅图像中后仍然保持不变,则这种变换称为刚体变换(Rigid Transform)。刚体变换仅局限于平移、旋转和反转(镜像)。(2)仿射变换如果一幅图像中的直线经过变换到另一幅图像上仍为直线,并且保持平行关系,则这种变换称为仿射变换(Af...转载 2019-07-10 21:14:13 · 9631 阅读 · 1 评论 -
图像配准(对齐)
对齐过程描述如下:提取两幅图像各自的特征点,对两幅图像的特征点集进行匹配,得到最优匹配, 再利用仿射变换/透视变换等优化两幅图像之间的对应关系,从而求得变换参数,最终可利用最优化参数,将其中一幅图像变形为与另外一幅图像同样的空间布局,从而可实现诸如:多张图像融合/超分辨率放大/图像拼接/目标识别等目的。具体流程如下:step 1: 特征点提取step 2: 特征点集的匹配step 3:...原创 2019-07-18 15:40:35 · 9522 阅读 · 2 评论 -
图像处理中的振铃现象产生原因
图像处理中,对一幅图像进行滤波处理,如果选用的频域滤波器具有陡峭的变化,则会使滤波图像产生“振铃现象”。如下图:振铃现象产生的本质原因是:对于辛格函数sinc而言,经过傅里叶变换之后的函数形式为窗函数(理想低通滤波器)形式,用图像表示如下:图1.左边为矩形窗函数,右边为辛格函数因此凡具有接近窗函数的滤波器,IFT之后,其空域函数形式多少接近sinc函数。sinc是进行图像滤波的主要因素,两边的余波将对图像产生振铃现象。下面给出三个常用的低通滤波器:理想型、巴特沃斯型、高斯型。并分转载 2020-09-15 20:54:47 · 15487 阅读 · 2 评论