
深度学习
文章平均质量分 94
收集和整理相关的深度学习技术
AI未来
这个作者很懒,什么都没留下…
展开
-
anaconda conda 换源以及windows下的环境变量配置
windows下1 添加清华源命令行中直接使用以下命令conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/c...转载 2019-11-28 12:28:44 · 6427 阅读 · 0 评论 -
自己动手实现卷积操作(Pytorch)
参考文章:https://blog.csdn.net/yutingzhaomeng/article/details/108883152其中也有自己的一些理解。某些时候可能需要用到类似卷积操作滑动窗的思想,实现一些操作。具体实现如下,首先导入必要的包import torchimport numpy as npimport torch.nn as nn方便起见(同时为了验证方法正确性),构建简单的卷积输入input = torch.from_numpy(np.array([1,2,3,4,5,转载 2020-12-14 16:43:08 · 3396 阅读 · 1 评论 -
一个涵盖主流光流算法的网站
一个涵盖主流光流算法的网站:http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow原创 2020-11-23 21:25:18 · 324 阅读 · 0 评论 -
基于空间金字塔池化的卷积神经网络目标检测
转载文章:http://blog.csdn.net/hjimce/article/details/50187655作者:hjimce一、相关理论 本篇博文主要讲解大神何凯明2014年的paper:《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》,这篇paper主要的创新点在于提出了空间金字塔池化。paper主页:http://research.microsoft.com/en-us/u...转载 2020-11-23 15:34:31 · 384 阅读 · 0 评论 -
全卷积神经网络
文章链接:https://www.cnblogs.com/gujianhan/p/6030639.html转载 2019-03-02 18:25:59 · 155 阅读 · 0 评论 -
卷积,反卷积,上采样,下采样理解
文章链接:https://buptldy.github.io/2016/10/29/2016-10-29-deconv/转载 2019-03-02 16:58:27 · 679 阅读 · 0 评论 -
卷积神经网络(CNN)理解
链接地址:卷积神经网络的理解:原创 2019-02-22 20:16:28 · 152 阅读 · 0 评论 -
深度学习杂记
1、深度学习中,并行结构分为数据并行和模型并行。AlexNet属于模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分。分别训练得到不同的模型,然后再将模型进行融合。模型并行指的是将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。2、ReLU与Sigmoid相比,其优势在于训练速度更快,因为Sigmoid的导数在饱和区...原创 2019-04-09 14:54:55 · 146 阅读 · 0 评论 -
深度学习中一些常见的问题
梯度消失和梯度爆炸:深度神经网络训练的时候,采用反向传播方式,该方式背后其实是链式求导,计算每层梯度的时候会涉及一些连成操作,因此如果网络过深,那么如果连乘的因子大部分小于1,最后乘积可能趋于0;另一方面,如果连乘的因子大部分大于1,最后乘积可能趋于无穷。这就是所谓的梯度消失和梯度爆炸。...原创 2019-04-09 11:01:59 · 329 阅读 · 0 评论 -
Triplet-Loss原理
介绍triplet loss最初是在FaceNet: A Unified Embedding for Face Recognition and Clustering论文中提出的,可以学到较好的人脸的embedding 作用:用于训练差异性较小的样本,比如人脸,去区分相似的人脸图原理输入是一个三元组<a, p, n>a: anchor 锚 p: positive,...原创 2019-09-04 10:03:45 · 1900 阅读 · 0 评论 -
TVLoss理解
在图像复原过程中,图像上的一点点噪声可能就会对复原的结果产生非常大的影响,因为很多复原算法都会放大噪声。这时候我们就需要在最优化问题的模型中添加一些正则项来保持图像的光滑性,TV loss是常用的一种正则项(注意是正则项,配合其他loss一起使用,约束噪声)。图片中相邻像素值的差异可以通过降低TV loss来一定程度上解决。比如降噪,对抗checkerboard等等。1. 初始定义Rudin等...转载 2019-07-16 12:15:55 · 9792 阅读 · 0 评论 -
Gram矩阵及其实际含义
1、Gram矩阵的定义2、意义格拉姆矩阵可以看做feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有...原创 2019-07-16 11:50:14 · 1489 阅读 · 0 评论 -
混淆矩阵confusion matrix的创建方式(可视化)
1.分类准确率及其局限性分类准确率是预测正确的样本数与总样本数的比值即:分类准确率 = 预测正确的样本数 / 总样本数错误率即: 错误率 = 1 - 分类准确率分类准确率看上去是一个不错的评判标准,但在实际当中往往却存在着一些问题。其主要问题在于它隐藏了我们需要的细节,从而阻碍我们更好地理解分类模型的性能。 有两个最常见的例子: 当我们的数据有2个以上的类时,如3个或更多类,...原创 2019-12-08 12:24:44 · 11173 阅读 · 2 评论 -
Visualizing and Understanding Convolutional Networks(神经网络可视化)理解
作者的核心思想要点:feature map的可视化一般的卷积神经网络某一层的输出,都是将Input Image,经过多次的Conv、ReLU、Pooling作用后的得到的结果。举个简单又不失一般性的单层卷积神经网络模型:现在我们想知道Pooling后得到的96个112x112的feature maps中的一个feature map到底学到的是啥?怎么做?一个直观的想法是将1...转载 2019-12-15 15:26:28 · 372 阅读 · 0 评论 -
学习率的设置(不同层,学习率衰减方式)
PyTorch学习之学习率调整策略PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是:a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。b. 自适应调整:自适应调整学习率 ReduceLR...原创 2019-12-08 17:46:51 · 10046 阅读 · 2 评论 -
k-近邻算法
文章链接:https://blog.csdn.net/Daycym/article/details/81178519原创 2020-05-13 16:04:23 · 141 阅读 · 0 评论 -
基于深度学习的图像边缘和轮廓提取方法介绍
附原文链接:https://blog.csdn.net/weixin_38754361/article/details/100059562原创 2020-05-13 15:53:52 · 1864 阅读 · 0 评论 -
Logistic回归通俗简单的理解
参考文章:https://www.jianshu.com/p/4cf34bf158a1https://www.jianshu.com/p/e817b2bcab63原创 2020-05-13 11:36:32 · 608 阅读 · 0 评论 -
深度学习中的的超参数调节
参考文章:https://www.jianshu.com/p/98488418ee4f原创 2020-05-13 11:34:44 · 471 阅读 · 0 评论 -
Transformer学习记录
Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN。我们根据论文的结构图,一步一步使用 PyTorch 实现这个Transformer模型。Transformer架构首先看一下transformer的结构图:...原创 2020-04-04 18:08:32 · 193 阅读 · 0 评论 -
GAN学习指南(通俗易懂):从原理入门到制作生成Demo
本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 ???? 一、GAN原理介绍说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.o...原创 2020-03-30 17:23:06 · 1492 阅读 · 0 评论 -
卷积神经网络为什么具有平移不变性?
概述在读计算机视觉的相关论文时,经常会看到平移不变性这个词,本文将介绍卷积神经网络中的平移不变性是什么,以及为什么具有平移不变性。什么是平移不变性?不变性不变性意味着即使目标的外观发生了某种变化,但是你依然可以把它识别出来。这对图像分类来说是一种很好的特性,因为我们希望图像中目标无论是被平移,被旋转,还是被缩放,甚至是不同的光照条件、视角,都可以被成功地识别出来。所以上面的...原创 2020-03-02 11:13:56 · 4810 阅读 · 0 评论