好像中了CVPR 2020???没有查到
代码:https://github.com/jspan/blindvsr
文章思路
所谓盲超分:
我的理解是目前大部分的图像和视频超分辨算法,他们所使用的退化模型都是已知的,比如Bicubic核,高斯模糊核。在我们使用CNN去建模时,CNN在超分过程中并不会对模糊核进行建模,因为它是已知的,这样导致的问题就是最后产生的超分结果很平滑,看上去就会显得比较模糊。(这个地方的疑惑是为什么已知了,CNN就不对其建模了?这个地方有大佬有更深入的理解,还望告诉在下,)
所以盲超分要解决的问题就是估计模糊核
这篇文章是第一篇做视频盲超分的文章。它提出用深度卷积网络进行视频的盲超分,整个网路由三部分组成:
1)运动模糊核估计网络,因为是视频超分,这里的模糊核就是运动模糊核了。
2)运动估计网络
3)视频帧复原网络
完整架构如下:
整个算法的流程叙述如下:
1)首先进行运动模糊核估计。这个运动模糊核估计网络由两层全连接层组成,实验中两层的大小分别设为1000和225。核估计网络采用高斯核作为输入,输入的具体设置,可以参见源码或者论文[1],然后网络逐渐学习去逼近这个真实的核,最后输出的估计核大小为 15 × 15 15\times15 15