题目:
在给定的网格中,每个单元格可以有以下三个值之一:
值 0 代表空单元格;
值 1 代表新鲜橘子;
值 2 代表腐烂的橘子。
每分钟,任何与腐烂的橘子(在 4 个正方向上)相邻的新鲜橘子都会腐烂。
返回直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1。
示例1:
输入:[[2,1,1],[1,1,0],[0,1,1]]
输出:4
示例 2:
输入:[[2,1,1],[0,1,1],[1,0,1]]
输出:-1
解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个正向上。
示例 3:
输入:[[0,2]]
输出:0
解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。
AC代码:广度优先搜索
class Solution {
int[] r_wasd = new int[]{-1,0,1,0};
int[] c_wasd = new int[]{0,-1,0,1};
public int orangesRotting(int[][] grid) {
int row = grid.length;
int column = grid[0].length;
Queue<Integer> rot = new ArrayDeque<>();
Map<Integer,Integer> map = new HashMap<>();
int ans = 0;
for(int i=0;i!=row;++i){
for(int j=0;j!=column;++j){
if(grid[i][j] == 2){
int tmp = i * 10 + j;
rot.add(tmp);
map.put(tmp,0);
}
}
}
while(!rot.isEmpty()){
int tmp = rot.remove();
int x = tmp / 10;
int y = tmp % 10;
for(int i=0;i!=4;++i){
int tmp_x = x + r_wasd[i];
int tmp_y = y + c_wasd[i];
if(tmp_x >= 0 && tmp_y >= 0 && tmp_x < row && tmp_y < column && grid[tmp_x][tmp_y] == 1 ){
grid[tmp_x][tmp_y] = 2;
int tmp_code = tmp_x * 10 + tmp_y;
rot.add(tmp_code);
map.put(tmp_code,map.get(tmp) + 1);
ans = map.get(tmp_code);
}
}
}
for(int i=0;i!=row;++i){
for(int j=0;j!=column;++j){
if(grid[i][j] == 1)
return -1;
}
}
return ans;
}
}