Tensorflow入门四 CNN(极简主义)

很简单的CNN实现,依旧用mnist作为训练集与测试集
不懂看注释吧


上代码:

#CNN
#深度学习出现之前借助SIFT、HOG等算法提取良好特征,集合SVM等算法进行图像识别
#深度学习将特征提取和分类训练结合在一起,分类时自动提取特征
#CNN可以使用图像的原始像素作为输入
#神经认知机中包含两类神经元:S-cells和C-cells
#S-cells对应主流卷积神经网络的卷积核滤波操作
#C-cells对应激活函数,最大池化等操作
#一般卷积神经网络由多个卷积层构成,每个卷积层进行如下操作:
#1.图像通过多个不同的卷积核的滤波,并加偏置(bias),提取局部特征,每个卷积核会映射出一个新的2D图像
#2.将前面卷积核的滤波输出结果,进行非线性的激活函数(ReLU、Sigmoid)
#3.对激活函数进行池化操作,(2*2->1*1),一般最大池化,保留最显著特征,并提升模型的畸变容忍能力
#隐含层节点数量只和卷积核步长有关(n*n)
#局部链接,权值共享,池化层中的降采样

#载入数据集
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
sess=tf.InteractiveSession()

#初始化函数权值+偏执
def weight_variable(shape):
    initial=tf.truncated_normal(shape,stddev=0.1)#标准差为0.1
    return tf.Variable(initial)

def bias_variable(shape):
    initial=tf.constant(0.1,shape=shape)#避免死亡节点
    return tf.Variable(initial)

#x:输入;W:卷积的参数,如[5,5,1,32]:前两个代表卷积核的尺寸,迪萨格代表有多少channel()
#灰度图为1,彩色图为3,最后一个为卷积核的数量,就是卷积层会提取多少类特征。
#strides代表卷积模板移动的步长,都是1不会遗漏的划过图片的每一个点
#padding让卷积的输入和输出保持同样的尺寸
def conv2d(x,W):#2维卷积函数
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#最大池化函数,这里使用2*2的最大池化
#将2*2的像素块降为1*1的像素,最大池化会保留灰度值最高的像素
#希望整体上缩小图片,池化层strides设为横竖两个方向以2为步长,如果步长还是1,那会得到一个尺寸不变的图片
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#定义输入的placeholder
#x是特征,y_是真实标签,
#由于卷积神经网络会利用空间信息,需要将ID的输入量转换为2D图片
#-1:样本数量不固定;1*784转换为28*28结构;1:颜色通道数量
x=tf.placeholder(tf.float32,[None,784])
y_=tf.placeholder(tf.float32,[None,10])
x_image=tf.reshape(x,[-1,28,28,1])

#定义第一个卷积层
W_conv1=weight_variable([5,5,1,32])
b_conv1=bias_variable([32])
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)#池化

#定义第二个卷积层,64个卷积核,提取64个特征
W_conv2=weight_variable([5,5,32,64])#上一层的卷积核为32,即输出32的通道
b_conv2=bias_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)

#由于经过了两次步长为2*2的最大池化所以边长只有1/4
#图片尺寸由28*28变成7*7,第二层的卷积核数量为64
#输出的tensor尺寸为7*7*64
W_fc1=weight_variable([7*7*64,1024])#对隐含节点初始化,第一个是长度,第二是节点数量
b_fc1=bias_variable([1024])
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])#对第二个池化层的tensor进行变形,转换为ID向量,连接一个全链接层,隐含节点为1024
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#dropout层
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

#Dropout输出连接一个Softmax层,得到概率输出
W_fc2=weight_variable([1024,10])#前一个为1024
b_fc2=bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

#定义损失函数为cross entropy,优化器使用Adam,学习速率le-4
cross_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv),reduction_indices=[1]))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#准确率测评操作
correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#训练过程
tf.global_variables_initializer().run()
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 ==0:
        train_accuracy=accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})
        print("step %d, training accuracy %g"%(i,train_accuracy))
    train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})


欢迎骚年们交流指正哦


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值