一.1 B Managing Sustainable Tourism
这个问题要求我们为阿拉斯加州的朱诺市(Juneau)设计一个可持续的旅游业管理模型,旨在平衡游客数量与当地社区和自然资源的可持续性。朱诺面临的主要问题包括游客数量的过度增长、自然景点(如门登霍尔冰川)的退缩、基础设施压力、居民的生活成本等。我们需要开发一个模型,优化旅游业的可持续发展,同时考虑财政收入的再投资如何反馈促进可持续旅游。模型还需要包括敏感性分析,分析哪些因素对可持续旅游最为关键,并讨论如何将模型应用到其他地区。
一.1.1 问题分析
朱诺的主要问题是旅游业对当地的影响,包括:
过度旅游(Overtourism):游客数量过多导致的资源过度消耗(如水资源、废物管理等)、自然景点退缩(如冰川融化)以及当地居民生活质量下降。
财政收入与负担:游客为当地带来经济收益,但也带来了巨大的负担,尤其是基础设施的压力。
可持续发展:需要在维持经济收益与保护自然资源、提升当地居民生活质量之间找到平衡。
一.1.2 建模目标与约束
优化目标(多目标):
最大化旅游收入:保持适当的游客数量,同时保证城市收入的最大化。
优化旅游影响:限制游客数量以减少对自然环境(如冰川)的负面影响(自然影响),同时避免对当地居民生活质量造成过大影响(人文影响)。
提高居民幸福感:考虑游客对居民生活的影响,避免过度拥挤和生活成本的上涨。
最小化自然资源消耗:考虑旅游业对资源的额外消耗最小
最大化政府收入:考虑旅游业对政府的额外负担和旅游业为政府创造到收益,增加政府因旅游业而创造的收益
主要约束:
环境保护:限制游客数量和活动对自然景点(如门登霍尔冰川)的影响。
基础设施容量:限制游客数量不超过当地基础设施的承载能力,包括水、电、交通等。
居民满意度:控制游客数量,确保不对居民的生活质量造成过度负面影响。
收入和支出:
收入来源:游客门票、旅游税、住宿税等。
支出方向:
- 投入基础设施建设:如改善交通、增设公共设施等。
- 投入环境保护和保育工作:如冰川保护、生态恢复等。
- 社区发展:如提升居民福利、改善住房条件等。
b. 环境与社会反馈
通过设定预算和反馈机制,我们可以让增加的收入用于以下领域:
基础设施和社区改善:例如,改善交通网络,减少拥堵,提升居民生活质量。
生态保护与修复:例如,采取措施保护冰川,恢复自然景点等。
游客管理:例如,通过提高门票价格或设置游客数量上限来平衡游客流量。
c. 敏感性分析
我们需要进行敏感性分析,测试不同因素对模型结果的影响。关键因素包括:
游客数量(T):如何在提高收入的同时控制游客数量。
环境保护措施(R):采取哪些措施能够有效减少环境破坏。
税收和费用(C):适当的税收和费用对收入的影响,如何平衡增加收入与防止游客流
一.1.1 耦合协调度
耦合协调度(Coupling Coordination Degree,简称CCD)是一个用于衡量不同系统之间相互作用、协调发展程度的指标。这一概念广泛应用于环境科学、经济学、社会学等多个领域,尤其是在可持续发展和区域协调发展研究中。
1. 基本概念
耦合协调度主要用来描述多个系统(如经济、社会、环境等)在发展过程中,各自发展情况和相互协调的程度。耦合协调度范围通常为0到1,值越大表示系统之间的协调性越好。
2. 计算方法
耦合协调度一般通过以下几个步骤进行计算:
- 指标选择:选择反映各系统(如经济、社会、生态等)发展的指标。
- 标准化:对选定的指标进行标准化处理,以消除量纲影响。
- 耦合度计算:利用选定的指标值,计算耦合度(Coupling Degree),通常使用相关系数或者加权平均法。
- 协调度计算:结合耦合度和系统内部的发展均衡度进行协调度的计算,常用公式为
3. 耦合协调度的等级划分
耦合协调度根据其数值的不同,通常可以划分为以下几个等级:
- 弱耦合(0 < CCD ≤ 0.4):系统之间的协调性较差,发展不平衡。
- 中等耦合(0.4 < CCD ≤ 0.6):系统之间有一定的耦合,但仍需改进协调机制。
- 良性耦合(0.6 < CCD ≤ 0.8):系统之间的协同发展良好,互动频繁。
- 高度耦合(0.8 < CCD < 1):系统之间耦合性很高,发展协调一致。
4. 应用实例
耦合协调度可以用于评估城市发展、区域经济与环境保护之间的关系。例如,通过分析一个城市的经济发展、社会福利、环境保护三个方面的协调程度,可以为市政府制定相关政策提供有力支持。
耦合度C值:
“耦合”用于表示不同系统之间的相互作用强度,耦合协调度模型借用“耦合”概念来评估数据的耦合大小(当前步骤计算的耦合度C 值),该值越大意味着系统之间的相互作用强度越强。
协调度T值:
式中,beta为系统权重;U 为系统数据。如果各个系统权重一致,则 beta值全部为 1/n,n 为系统个数;如果各个系统权重不同,则对该值进行设置。
耦合协调度D值:
完成耦合度 C 值和协调度 T 值计算后,可计算耦合协调度 D 值;
一.1.1 多目标优化
Duo
·一. 多目标优化基础
o1.1 无约束的单目标优化问题
o1.2 无约束的多目标优化问题
o1.3 带约束的单目标优化问题
o1.4 带约束的多目标优化问题
·二. 多目标优化的解集:解集定义
o2.1 多目标优化的解集
o2.2 Pareto支配(Pareto Dominance)
o2.2 Pareto解集:绝对最优解
o2.3 Pareto解集:有效解
o2.4 Pareto解集:弱有效解
o2.5 Pareto最优解集(Pareto-optimal Set)
o2.6 Pareto最优前沿(Pareto-optimal front)
o2.7 多目标优化的最优性条件
·三. 多目标优化的经典算法
o3.1 线性加权法
o3.2 主要目标法
o3.3 逼近目标法
·四. 梯度下降算法
o4.1 最速下降方向
o4.2 多目标梯度下降算法
·五. 多任务学习(MTL)
o5.1 多任务学习定义
o5.2 多任务学习转化为多目标优化
·六. 多任务求解:单个帕累托解
o6.1 问题转化
o6.2 考虑两个任务的情形
·七. 多任务求解:多个帕累托解
o7.1 主要思想
o7.2 子问题的梯度下降方法
·八. 多任务求解:连续帕累托解
o8.1 主要思想
o8.2 预备知识:Krylov子空间
o8.3 基本概念
o8.4 离散帕累托求解
o8.5 连续帕累托解(前沿)构建
·参考文献
对于多目标规划的解法,这里主要介绍两类:传统的多目标解法和智能优化算法,其中智能优化算法目前是国际上比较流行的多目标规划的求解方法,算法已经被Matlab集成。
传统解法——多目标规划转换为单目标规划
① 效用最优化模型
思想:规划问题的各个目标函数可以通过一定的方式进行求和运算。这种方法将一系列的目标函数与效用函数建立相关关系,各目标之间通过效用函数协调,使多目标规划问题转化为传统的单目标规划问题:
是与各目标相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值λ来反映原问题中各目标函数在总体目标中的权重,即:
其中,权重值和为1:
② 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值(或称满意值);通过比较实际值f_i与期望值f*_i之间的偏差来选择问题的解,其数学表达式如下:
其中λ_i是与第i个目标相关的权重。
③ 约束模型
理论依据 :若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。
假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:
给旅游委员会的建议:一页简报
简报内容:
主题:关于朱诺市可持续旅游业的建议
尊敬的旅游委员会成员:
根据我们的分析,朱诺市面临的主要挑战是如何平衡游客数量与城市的可持续发展。为实现这一目标,我们提出以下建议:
1. 实施游客数量上限:通过限制每日游客数量,减轻对冰川等自然景点的压力,并保护当地生态环境。
2. 增加税收和费用:适当提高旅游税和住宿费,以增加财政收入,用于基础设施和生态保护项目。
3. 优化游客体验:通过提升其他景点(如鲸鱼观赏和雨林)的吸引力,分散游客流量,避免集中在单一景点。
4. 再投资收入:将增加的税收和门票收入投入基础设施建设、环境保护和社区发展,以提升居民生活质量,并创造良好的游客体验。
通过这些措施,我们相信朱诺市可以实现长期的旅游收入增长,同时保护自然资源,提升居民幸福感,并维持旅游业的可持续发展。
敬上,
[您的名字]