数组,矩阵,向量,方阵与行列式的相关关系

本文介绍了数组、矩阵、向量和方阵等数学概念在信息技术中的应用。数组是有序数据集合,可为一维、二维或多维。矩阵是二维数组,常用于线性代数;向量是特殊的矩阵,分为行向量和列向量。方阵是行数和列数相等的矩阵,其行列式在解线性方程组中有重要作用。了解这些基本概念对于理解和应用线性代数至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 数组(array):就是我们熟悉的array,数组可以有一维,二维,…n维数组。
  2. 矩阵(matrix):矩阵是一个按照长方阵列排列的复数或实数集合,由向量组构成。矩阵是由m*n个数排列成m行n列的数表。一般特指二维数组,其他与数组相同。
  3. 向量(vector):一般指1 * n或者n*1的数组,前者是行向量,后者是列向量。
  4. 方阵(square matrix):一般特指n*n的数组,其它与数组相同。
  5. 行列式(determinant):方阵的det值,一般用在解线性方程组中
    注意数组和行列式的区别:数组与标量相乘,是数组的每一个元素都乘以那个标量,而行列式则只有某一行(列)乘以那个标量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值