本文主要参考的视频教程如下:
8小时学完线代【中国大学MOOC*小元老师】线性代数速学_哔哩哔哩_bilibili
另外这个视频可以作为补充:
行列式的概念和定义
一般会由方程组来引出行列式
比如一个二阶行列式
二阶行列式的计算就是主对角线的乘积减去副对角线的乘积;
再看看三阶行列式
举个例子帮助理解
行列式越往高阶越复杂。
二阶和三阶的尚且可以通过上面的方式来暴力求解,但是阶数高了就比较麻烦了。
所以就需要研究行列式的各种性质。
那到底什么是行列式呢?上面的计算方式又是怎么定义的呢?
首先,我们回顾下全排列的概念
其实就是一组数有多少种排列组合,其结果就是n的阶乘。
再来看下逆序以及逆序数的概念
逆序是一种状态,而逆序数是指这种状态的数量,要注意区分。
基于全排列和逆序数的概念,我们来看看n阶行列式
n阶行列式就是不同行不同列的所有元素相乘再求和,前面的正负号由逆序数决定,总的求和项就是n的阶乘。
对于行列式,有几个问题一定要注意:
1、行列式是个方形的,行和列数量必须相等,有n行n列,就称之为n阶行列式;
2、行列式两侧用竖线来表示,不能用其他符号;
3、行列式是一个确定的常数;
行列式的定义了解就行,重点记住二阶和三阶的暴力求解方式,然后再记住一些特殊的行列式。
几种特殊行列式
这三种特殊行列式的结果都是主对角线相乘。
行列式的性质
依靠定义很难计算复杂的高阶行列式,所以还需要学习行列式的一些性质。
转置后值不变
转置的符号是右上角加个T
线性性质
线性性质是一大类