线代:认识行列式、矩阵和向量

本文主要参考的视频教程如下:

8小时学完线代【中国大学MOOC*小元老师】线性代数速学_哔哩哔哩_bilibili

另外这个视频可以作为补充:

【考研数学 线性代数 基础课】—全集_哔哩哔哩_bilibili

行列式的概念和定义

一般会由方程组来引出行列式

比如一个二阶行列式

二阶行列式的计算就是主对角线的乘积减去副对角线的乘积;

再看看三阶行列式

举个例子帮助理解

行列式越往高阶越复杂。

二阶和三阶的尚且可以通过上面的方式来暴力求解,但是阶数高了就比较麻烦了。

所以就需要研究行列式的各种性质。

那到底什么是行列式呢?上面的计算方式又是怎么定义的呢?

首先,我们回顾下全排列的概念

其实就是一组数有多少种排列组合,其结果就是n的阶乘。

再来看下逆序以及逆序数的概念

逆序是一种状态,而逆序数是指这种状态的数量,要注意区分。

基于全排列和逆序数的概念,我们来看看n阶行列式

n阶行列式就是不同行不同列的所有元素相乘再求和,前面的正负号由逆序数决定,总的求和项就是n的阶乘。

对于行列式,有几个问题一定要注意:

1、行列式是个方形的,行和列数量必须相等,有n行n列,就称之为n阶行列式;

2、行列式两侧用竖线来表示,不能用其他符号;

3、行列式是一个确定的常数;

行列式的定义了解就行,重点记住二阶和三阶的暴力求解方式,然后再记住一些特殊的行列式。

几种特殊行列式

这三种特殊行列式的结果都是主对角线相乘。

行列式的性质

依靠定义很难计算复杂的高阶行列式,所以还需要学习行列式的一些性质。

转置后值不变

转置的符号是右上角加个T

线性性质

线性性质是一大类

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值