如何理解复连通区域的格林公式

在这里插入图片描述
上面那个网图,我借用说明下。

首先声明一点:格林公式只对单连通区域生效。

但是如何求复连通区域的 ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \iint_D(\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y})dxdy D(xQyP)dxdy ?

切割成两个单连通区域,然后对两个单连通区域分别使用格林公式。

∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∬ D 1 ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y + ∬ D 2 ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ C 1 + C 2 P d x + Q d y \iint_{D} (\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y}) dxdy= \iint_{D_1} (\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y}) dxdy +\iint_{D_2} (\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y}) dxdy = \oint_{C_1+C_2}Pdx+Qdy D(xQyP)dxdy=D1(xQyP)dxdy+D2(xQyP)dxdy=C1+C2Pdx+Qdy

因为红色部分抵消。加入只剩下内部的顺时针线l和外部的逆时针线L.

复连通区域下格林公式为:
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L ( P d x + Q d y ) − ∮ l ( P d x + Q d y ) \iint_{D} (\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y}) dxdy= \oint_L(Pdx+Qdy) - \oint_l (Pdx+Qdy) D(xQyP)dxdy=L(Pdx+Qdy)l(Pdx+Qdy)
其中 L , l L,l L,l都是逆时针线。

那么如果理解同济七版p208的例题4.

那个题首先:

∂ Q ∂ x = ∂ P ∂ y → ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = 0 \frac {\partial Q} {\partial x} = \frac {\partial P} {\partial y} \to \iint_{D} (\frac {\partial Q} {\partial x} - \frac {\partial P} {\partial y}) dxdy =0 xQ=yPD(xQyP)dxdy=0

进而推出:

∮ L ( P d x + Q d y ) − ∮ l ( P d x + Q d y ) = 0 → ∮ L ( P d x + Q d y ) = ∮ l ( P d x + Q d y ) \oint_L(Pdx+Qdy) - \oint_l (Pdx+Qdy) =0 \to \oint_L(Pdx+Qdy) = \oint_l (Pdx+Qdy) L(Pdx+Qdy)l(Pdx+Qdy)=0L(Pdx+Qdy)=l(Pdx+Qdy)

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值