同济大学出版的高等数学无穷级数这一章,关于常数项级数的审敛法,证明p级数敛散性问题,对其积分法不甚明了,所以记录下自己思索的过程:
讨论p级数:
1
+
1
2
p
+
1
3
p
+
.
.
.
.
.
+
1
n
p
+
.
.
.
.
1+\frac{1}{2^p}+\frac{1}{3^p}+.....+\frac{1}{n^p}+....
1+2p1+3p1+.....+np1+....
的收敛性,其中常数
p
p
p>0
当p=1时,p级数称为调和级数
第一个问题用比较审敛法很好证明,我顺利的明白了。
即当
p
≤
1
p\le1
p≤1时,有
1
n
p
≥
1
n
\frac{1}{n^p}\ge \frac{1}{n}
np1≥n1,调和级数是发散的,按照比较审敛法:
若
v
n
v_n
vn是发散的,在n>N,总有
u
n
≥
v
n
u_n \ge v_n
un≥vn,则
u
n
u_n
un也是发散的。
调和级数 1 n \frac{1}{n} n1是发散的,那么p级数也是发散的~!
第二个条件则证明变得繁琐:
当p>1时,证明的思路大概就是对于每一个整数,我们取一个邻域区间,使邻域区间
x ∈ [ k , k − 1 ] x\in[k,k-1] x∈[k,k−1]使得某个函数在 [ k , k − 1 ] [k,k-1] [k,k−1]邻域区间内的积分小于 1 x p \frac{1}{x^p} xp1在这个邻域区间的积分。然后目的当然是通过积分求指数原函数解决问题。
这个证明的比较函数取的很巧妙,,令
k
−
1
≤
x
≤
k
k-1\le x \le k
k−1≤x≤k,那么
1
k
p
≤
1
x
p
\frac{1}{k^p} \le \frac{1}{x^p}
kp1≤xp1.
利用比较审敛法的感觉,应该找一个比p级数的一般式大的收敛数列,证明p级数收敛。这个就有点反套路了。
1
k
p
=
∫
k
−
1
k
1
k
p
d
x
(
这
里
是
对
x
积
分
而
不
是
k
)
≤
∫
k
−
1
k
1
x
p
\frac{1}{k^p}=\int_{k-1}^{k}\frac{1}{k^p}dx(这里是对x积分而不是k) \le\int_{k-1}^{k} \frac{1}{x^p}
kp1=∫k−1kkp1dx(这里是对x积分而不是k)≤∫k−1kxp1
其中
(
k
=
2
,
3....
)
(k=2,3....)
(k=2,3....)
讨论级数和,用k的形式代表p级数,并且用一个大于它的函数来求得极限。
s
n
=
1
+
∑
k
=
2
n
1
k
p
(
p
级
数
)
≤
1
+
∑
k
=
2
n
∫
k
−
1
k
1
x
p
=
1
+
∫
1
n
1
x
p
d
x
=
1
−
1
p
−
1
[
n
−
p
+
1
−
1
]
≤
1
+
1
p
−
1
(
p
为
常
数
)
s_n=1+\sum_{k=2}^{n} \frac{1}{k^p}(p级数) \le 1+\sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x^p}=1+\int_{1}^{n} \frac{1}{x^p}dx=1- \frac{1}{p-1}[n^{-p+1}-1] \le 1+\frac{1}{p-1}(p为常数)
sn=1+k=2∑nkp1(p级数)≤1+k=2∑n∫k−1kxp1=1+∫1nxp1dx=1−p−11[n−p+1−1]≤1+p−11(p为常数)
其中:
( 其 中 n > 1 , p > 1 , 则 0 < n − p + 1 < 1 , 则 − 1 < n − p + 1 − 1 < 0 , 进 而 0 < − 1 p − 1 [ n − p + 1 − 1 ] < 1 p − 1 ) (其中n>1,p>1,则0<n^{-p+1}<1,则 -1<n^{-p+1} -1<0,进而 0<- \frac{1}{p-1}[n^{-p+1}-1]<\frac{1}{p-1}) (其中n>1,p>1,则0<n−p+1<1,则−1<n−p+1−1<0,进而0<−p−11[n−p+1−1]<p−11)
这里利用积分区间的可加性:
∫
D
1
f
(
x
)
d
x
+
∫
D
2
f
(
x
)
d
x
=
∫
D
1
+
D
2
f
(
x
)
d
x
\int_{D_1}f(x)dx+ \int_{D_2}f(x)dx=\int_{D_1+D_2}f(x)dx
∫D1f(x)dx+∫D2f(x)dx=∫D1+D2f(x)dx
求一下初等函数的原函数就搞定了!呵呵,只能说这个思路不太容易想到。