为什么一个矩阵乘以一个满秩矩阵后秩不变

A为N阶方阵,r(A) =p ,其中p< n. B为N阶方阵,r(B)=n.
证明: r(AB) = p.

定理1:矩阵B可逆,则存在有限个初等矩阵 P 1 , P 2 , P 3 . . . P n P_1,P_2,P_3...P_n P1,P2,P3...Pn,使得 A = P 1 P 2 . . . . P n A=P_1P_2....P_n A=P1P2....Pn

定理2:矩阵B满秩,则矩阵B可逆

定理3:进行初等行变换和初等列变换,不改变原有矩阵的秩

定理4:左乘一个初等矩阵,相当于进行一次初等行变换;右乘一个初等矩阵,相当于进行一次初等列变换。

A B = A ( P 1 P 2 . . . . P n ) AB=A(P_1P_2....P_n) AB=A(P1P2....Pn)相当于对A进行了N次,初等列变换,不改变矩阵A的秩。

那么因此 r ( A ) = r ( A B ) r(A)=r(AB) r(A)=r(AB)

那么同理, r ( A ) = r ( B A ) r(A)=r(BA) r(A)=r(BA)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值