矩阵的基础知识

矩阵乘法的基本性质

乘法结合律: (AB)C=A(BC).
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB).
转置 (AB)T=BTAT.

矩阵乘法一般不满足交换律(除了有些特殊的方阵之间的乘法)。

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A。有以下几种情况:

(1) 设A , B 至少有一个为零矩阵,则A , B 可交换;

(2) 设A , B 至少有一个为单位矩阵, 则A , B可交换;

(3) 设A , B 至少有一个为数量矩阵, 则A , B可交换;

(4) 设A , B 均为对角矩阵,则A , B 可交换;

(5) 设A , B 均为准对角矩阵(准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵),且对角线上的子块均可交换,则A , B 可交换;

拓展资料:

矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。

注意事项

当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。

矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

https://blog.csdn.net/deniece1/article/details/101982637

矩阵的秩和迹

矩阵的迹
数学定义:n×n矩阵A的对角线元素之和称为A的迹(trace),记作tr(A),即有:

tr(A)=a11+…+ann=∑ni=1aiitr(A)=a11+…+ann=∑i=1naii
矩阵的迹有如下重要性质:

tr(UV)=tr(VU)tr(UV)=tr(VU)
根据以上性质,若分别令U=A,V=BC和U=AB,V=C,则有:

tr(ABC)=tr(BCA)=tr(CAB)tr(ABC)=tr(BCA)=tr(CAB)
请思考: tr(ABC)=tr(CBA)tr(ABC)=tr(CBA) ?

类似地,若分别令U=A,V=BCD,U=AB,V=CD,及U=ABC,V=D,则有:

tr(ABCD)=tr(BCDA)=tr(CDBA)=tr(DABC)tr(ABCD)=tr(BCDA)=tr(CDBA)=tr(DABC)
请思考: tr(ABCD)=tr(DCBA)tr(ABCD)=tr(DCBA) ?

这些性质在机器学习的算法中会用到。

矩阵的秩
矩阵Am×nAm×n的秩定义为该矩阵中线性无关的行数和列数。

秩的性质:

秩是一个正整数。
秩等于或小于矩阵的行数和列数。
当n×n矩阵A的秩等于n时,则称A是非奇异矩阵,或称A满秩。
若rank(Am×n)<min{m,n}rank(Am×n)<min{m,n},则称A是秩亏缺的。
若rank(Am×n)=m(<n)rank(Am×n)=m(<n),则称矩阵A具有满行秩。
若rank(Am×n)=n(<m)rank(Am×n)=n(<m),则称矩阵A具有满列秩。
任何矩阵A左乘满列秩矩阵或者右乘满行秩矩阵后,矩阵A的秩保持不变。
————————————————
版权声明:本文为CSDN博主「桂小林」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/quintind/article/details/78452471

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值