位置注意力和通道注意力机制

Position Attention Module

捕获特征图的任意两个位置之间的空间依赖,对于某个特定的特征,被所有位置上的特征加权和更新。权重为相应的两个位置之间的特征相似性。因此,任何两个现有相似特征的位置可以相互贡献提升,而不管它们之间的距离.。

  • 特征图A(C*H*W)首先分别通过3个卷积层(BN和Relu)得到三个特征图{B,C,D},shape为(C*H*W),然后reshape为C*N,其中N=H*W,为像素的数量。
  • 矩阵C和B的转置相乘,在通过softmax得到spatial attention map S(N*N)
  • 矩阵D和S的转置相乘,reshape result到(CxHxW)再乘以尺度系数 α 再reshape为原来形状(C*H*W),最后与A相加得到最后的输出E

S矩阵的每一个元素为S_{ji}=\frac{exp(B_i \cdot C_j)}{ \sum ^N_{i=1} exp(B_i \cdot C_j) }S_{ji}表示位置i对位置j的影响。E中的每一个元素为E_j = \alpha \sum_{i=1}^N (S_{ji} \cdot D_i)+A_j,\alpha为尺度因子,D_i为D的元素,A_j为A的元素

  • S矩阵相当于一个attention,它的每一行计算的是,所有像素与某个像素之间的依赖关系,softmax概率化,softmax值越大,说明更可信,相对的依赖性也更强。

Channel Attention Module

  • 在Channel Attention Module中,分别对A做reshape(C*N)和reshape与transpose(N*C)
  • 将得到的两个特征图相乘再通过softmax得到channel attention map X(C×C)
  • X与A做乘积再乘以尺度系数β再reshape为原来形状(C*H*W),最后与A相加得到最后的输出E。

其中β初始化为0,并逐渐的学习分配到更大的权重。S矩阵的每一个元素为x_{ji}=\frac{exp(A_i \cdot A_j)}{\sum_{i=1} ^Cexp(A_i \cdot A_j)}x_{ji}表示第i^{th}通道对通道j^{th}的影响。E中的每一个元素为E_j=\beta \sum_{i=1}^C(x_{ji}\cdot A_i)+A_j\beta为尺度因子,x_ix的元素(权重),A_jA的元素.

需要注意的是,在计算两个通道的关系之前,我们没有使用卷积层来计算特征,因为它可以维持不同通道之间的映射关系。此外,与通过全局池化或者编码层来探索通道关系不同,我们利用所有相关位置的空间信息来建模通道的相关性。

References

  • 13
    点赞
  • 121
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值