On-Street and Off-Street Parking Availability Prediction Using Multivariate Spatio-temporal Models

On-Street and Off-Street Parking Availability Prediction Using Multivariate Spatio-temporal Models【2015 IEEE】

abstraction

introduction

modeling

model’s training

PA prediction

demonstration

conclusion

0. Abstraction:

使用多变量时空模型的街道内外PA预测

场景:parking facility的PA预测(both on-street and off-street)

切入点:街道内外的PA不确定性,所以需要一个可以预测PA的PGI系统(Parking Guidance and Information)

模型:多元自回归模型(multivariate autoregressive model ),考虑PA的时空相关性

数据:来自旧金山和洛杉矶的实时数据

效果:预测误差用于推荐一个(with reliable accuracy)拥有在预计到达的时间内至少存在一个大概率可用的parking lot所在的停车位置。

Index Terms: Parking guidance systems, parking prediction, spatiotemporal models.【parking flows】

1. Introduction

他们发现,实时PA数据仅仅对于司机快要到达目的地时起作用,无助于司机行程刚开始或者做行程安排时推荐停车位。PA是一个随机的量,车辆在行驶途中可能会发生变化。由于停车预约系统的不足,所以需要在一定准确度程度上来对停车位进行预测。

[9]提出一个个性化PGI系统,考虑到司机的偏好和基于PA概率分布的预测算法。

[10]提出一种概率模型+仿真

[11]基于不同时间滞后(lags)的自相关

[10] [11]都是将停车数据作为一维时间序来处理的,本文将其作为有多维度依赖和相关性的变量。on-street parking相对于off-street parking有较高的方差(variance),因此on-street使用上述模型估计会产生相当大的误差(considerable errors).

到达时的PA预测和交通状况、基于交通流和出行时间的预计到达时间有很强的联系。现在文献中有很多关于交通流的预测模型,短期的预测模型包括非线性模型,如神经网络模型[12] [13],线性模型如Kalman Filters[14,15],state space model[16,17]和auto-regressive integrated moving average models(ARIMA 自回归综合移动平均模型[18,19])和基于仿真的方法。

[20] 提出了一个逻辑流程,用于根据输入、输出数据以及数据的性质来选择一个合适的模型。

[21] 比较了自回归模型、非参数回归模型、神经网络和启发式方法(heuristic),推断出季节性时间序列模型有更好的性能。他们认为这一结果是由于交通数据是stochastic的,而不是chaotic的。在概念程度上,PA的预测和交通流的预测有很强的相似性。

[22,23] 停车场的停车情况、停车规则、价格

本文:提出了一个可以分析基础设施可用信息的系统,从实时停车占用数据到停车规则,为司机提供在ETA(Estimated Time of Arrived)找到停车位的服务。我们的方法就是基于司机将要停车的区域PA使用历史和实时数据做在线预测。首先分析PA数据特征,其次建立PA预测模型。在金融应用的时间序列分析中使用trending和detrending的技术。在计算停车数据的trend组件后,进行去趋势化,防止trend组件overwhelm主组件。

trending: moving mean of data

detrending: the process of removing the trend of time series

2. Modeling of Parking Utilization

本章内容:parking data的属性,讨论PA模型,用实例motivate时间空间相关性。

旧金山、SA的数据显示:季节性、每个停车场PA之间的时间相关性、相邻区域的空间相关性。用parking lot表示一个停车位,用parking location表示一个停车场,用parking tile表示一组parking location。

parking utility在这里插入图片描述

以上四幅图分别表示:

  1. 工作日和周末一整天的on-street车位占用率:可以看出来都是在5点到13点逐渐上升的,工作日的上升幅度比周末的要大,说明工作日工作的人很多,所以街道上停车率较高。说明工作日更多的是面向商业,周末面向休闲。
  2. 不同季节的两个周末的on-street车位占用率:都是周末,趋势都一致。1月份的停车占用率较高,而6月份占用率较低。所以停车位的利用率和季节有关。

PA数据通常是聚合的,可用于一个停车场,不仅仅是一个停车位。为了研究相邻区域间停车利用率的影响,一般是以parking tile为单位,这样也可以减少算力需求。

A. Parking trend

停车场 l l l在时间 t t t的利用率:被占用的车位数/停车位总数: U l ( t ) = O l ( t ) P l ( t ) U_l(t)=\frac{O_l(t)}{P_l(t)} Ul(t)=Pl(t)Ol(t)

问题:PA会受到特定区域内事件的影响,比如社会实践、事故、道路封闭等。

处理:利用short-term and long-term historical parking data from the area of interest

B. Temporal Correlations

图c表示下午两点街道停车位的利用率和同一地点不同的滞后时间的占用率间相关性:看出停车利用率在很小的滞后时间内都具有很强的时间相关性。相关系数随着时滞的增大而减小。

r ( t , k ) r(t,k) r(t,k)表示时间 t t t和时间 t + k t+k t+k停车利用率的相关系数, U ˉ l ( t ) = ∑ l ∈ L U l ( t ) / ∑ l ∈ L 1 \bar U_l(t)=\sum_{l\in L}U_l(t)/\sum_{l\in L}1 Uˉl(t)=lLUl(t)/lL1 L = { l 1 , l 2 , . . . } L=\{l_1,l_2,...\} L={ l1,l2,...}表示停车场集合。
r ( t , k ) = ∑ l ∈ L ( U l ( t ) − U ˉ ( t ) ) ( U l ( t + k ) − U ˉ ( t + k ) ) ∑ l ∈ L ( U l ( t ) − U ˉ ( t ) ) 2 ∑ l

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值