学习机器视觉需要掌握哪些知识
机器视觉系统
1、视觉成像部分:包含几个典型组件:光源,镜头,工业相机
- 光源和镜头需要我们掌握光学知识,不同的打光方式,可以让相机对物体产生完全不同的成像;而镜头的倍率,焦距,视野等的选择不同直接决定了成像的逼真度;
- 工业相机需要我们掌握光电知识,掌握图像成像的基本知识,如清晰度,动态范围,视场角等,这样我们才能根据需求和场景选择正确的相机,最快速掌握这些知识的方法就是买一台入门级单反相机,来研究透这些成像参数和成像的关系;
2、图像处理部分(这块才是初学者学习的重点)
- 对于入门者来说,可以优先掌握PC平台的开发,在熟悉之后可以延展到嵌入式平台;
- 软件应用,大多数采用Qt,C++,C#,.net来写的,所以我们需要掌握一门编程语言;
- 图像算法层面,图像算法层面,典型的开源算法有OpenCV,商用的有Halcon,VisionPro
- 如果想在算法层面进一步深入,可以研究一下机器学习,例如:PyTorch,TensorFlow(利用pytorch建立一个可用于图像分类任务的人工神经网络)
- 理论方面,更多的是掌握图像处理的基本概念,推荐一本书《机器视觉算法与应用》
3、运动控制部分
- 难点在于,精度的矫正,因为很多场景和需求对精度的要求是非常高的;