离散数学中关系的性质:自反、反自反、对称、反对称、传递

关系的性质(自反、反自反、对称、反对称、传递)虽然比较抽象,但是学会之后会发现很多不懂的概念迎刃而解,所以值得一学。

定义

离散数学中,有一个重要的概念是关系的性质,其中包括(设 R 是集合 A 上的二元关系):

  • 自反:对于任意的 a 属于 A,必有 aRa。
  • 反自反:对于任意的 a 属于 A,必有 aR a。
  • 对称:对于任意的 a,b 属于 A,若 aRb,则必有 bRa。
  • 反对称:对于任意的 a,b 属于 A,若 aRb 且 bRa,必有 a=b(如果 aRb,且 a ≠ \ne =b,那么必有 bR a)。
  • 传递:对于任意的 a,b,c 属于 A,若 aRb 且 bRc,必有 aRc。

传递可能是最好理解的了,这里重点关注前四个性质。

这里需要强调一点,不管是自反和反自反,还是对称和反对称,都是都不是非此即彼的。换句话说,一个关系如果不是对称的,那么不表示它就是反对称的。自反与反自反同理。

举个🌰

以集合A={a, b, c}举几个例子帮助理解。

自反与反自反

自反其实就是所有元素都有<a,a>这种关系。一定要注意,是该集合中任意的(所有)元素都有这种关系。这与对称和反对称不一样。也就是说,{<a,a>, <b,b>, <c,c>}是自反的,但是{<a,a>, <b,b>}就不是自反的了,因为没有<c,c>

反自反就是不存在 <a,a> 这种关系,也就说,只要关系里出现这种都不行。比如{<a,c>, <b,c>, <c,c>}就不是反自反的,因为存在<c,c>。但是这里也不是自反的,因为不是所有关系都是 <a,a> 这样的。

对称与反对称

对称就是如果有 <a,b>,那么一定有 <b,a>。比如说{<a,b>, <b,a>}就是对称的。

反对称是这几个概念中最难懂的了,因为其有两种表达方式。

按照上面的第一个定义,就是如果有 <a,b> 和 <b,a>,那么一定 a=b。这个定义其实很像自反,上面提到的{<a,a>, <b,b>}{<a,a>, <b,b>, <c,c>}确实也是反对称的,但是反对称并不是少了个约束的自反反对称还有个表达是:如果 aRb,且 a ≠ \ne =b,那么必有 bR a。也就是说,像{<a,b>, <c,a>}这种也是反自反的。

看完上面的介绍后,很容易认为反对称就是对称的对立面,这是个非常容易错的地方。如果说自反与反自反的关键词是所有,那么对称与反对称的关键词就是存在:不允许存在任何一个反例。
比如说:{<a,b>, <b,a>, <c,a>}这样的情况,它虽然前两个关系是对称的,但是第三个并不是,所以它不是对称的。虽然<c,a>是反对称的,但是前两个关系不满足反对称的,所以这个关系是既不对称,也不反对称。

举个具体的的🌰

上面的例子比较抽象,下面用小于关系和小于等于关系举个例子。

小于关系是反自反、反对称、传递的
小于等于关系是自反、反对称、传递的

证明一下小于关系(你可以自己试着证明一下小于等于关系,便于理解):
对于任意 a 属于 R(实数集),a<a 不存在,所以是反自反的。
对于任意 a,b 属于 R,如果 a<b,但是 b<a 不成立,所以不是对称的。
对于任意 a,b 属于 R,如果 a<b,且a ≠ \ne =b,不存在 b<a,所以是反对称的(这里用了反对称的第二个定义)。
对于任意 a,b,c 属于 R,如果 a<b,b<c,那么存在 a<c,所以是传递的。

希望能帮到有需要的人~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值