以一个seq2seq模型为例,某一时刻t应该输出”you"这个词,但却错误的输出了“I”,那么如果将错误的输出传递给下一个时间序列,必然会影响接下来的输出,这个时候就有以下的策略。
两种策略为:
- 不管上一时刻输出是什么,当前时刻的输入总是规定好的,按照给定的 target 进行输入
- 当前时刻的输入和上一时刻的输出,是有关联的。具体来说就是,当前时刻的输入就是上一时刻的输出
如果使用第二种方式,其中只要一步预测错,后面的预测就会越来越跑偏,很难收敛
但是第一种训练方式存在以下的问题:
- 在解码的时候生成的字符都会受到 Ground-Truth 的约束,希望模型生成的结果都必须和参考句一一对应。这种约束在训练过程中减少模型发散,加快收敛速度。但是一方面也扼杀了翻译多样性的可能
- 在这种约束下,还会导致一种叫做 Overcorrect (矫枉过正) 的问题。例如:
- 待生成句的 Reference 为: "We should comply with the rule."
- 模型在解码阶段中途预测出来:"We should abide"
【尽管用正确的词作为上一个输入,这个词仍然可能预测成为其他词例如abide】- 然而按照规定,将第三个 ground-truth "comply" 作为第四步的输入。那么模型根据以往学习的 pattern,有可能在第四步预测到的是 "with"
- 模型最终的生成变成了 "We should abide with"
- 事实上,"abide with" 用法是不正确的,但是由于 ground-truth "comply" 的干扰,模型处于矫枉过正的状态,生成了不通顺的语句
Teacher Forcing的思想就是两者之间,有一定概率用上一次预测的词或者是上一个正确的词作为输入。
teacher_forcing_ratio = 0.5
teacher_forcing = random.random() < teacher_forcing_ratio
if teacher_forcing:
pass
else:
pass