笔者整理答案,以供参考
自我介绍
项目(20分钟)
RocketMQ延时消息的底层实现
回答: 延时消息的实现主要依赖于RocketMQ中的定时任务机制。消息被发送到Broker时,会先存储在一个特定的延时消息队列中。Broker会定时扫描这个队列,当消息的延时时间到了,就会把消息投递到目标消费队列中。
消息量太大导致读消息延迟时间很长怎么办
回答: 可以通过以下几种方式优化:
- 消息分区: 将消息分区存储,分散到不同的队列中,减小单个队列的压力。
- 水平扩展: 增加消费者的数量,提高消费能力。
- 批量消费: 合理设置批量消费的大小,减少每次I/O操作的次数。
- 异步处理: 将耗时的操作放到异步任务中执行,减小消费时间。
项目还有啥优化
回答: 项目的优化可以从多个方面入手,比如:
- 数据库优化: 添加索引,进行SQL查询优化,使用分库分表等。
- 缓存优化: 使用合适的缓存策略,避免缓存穿透、缓存雪崩等问题。
- 代码优化: 进行代码重构,减少重复代码,优化算法和数据结构。
- 架构优化: 采用微服务架构,拆分单体应用,提升系统的可扩展性。
讲一讲Redis
回答: Redis是一种基于内存的高性能键值对存储数据库,常用于缓存、会话存储、排行榜等场景。它支持丰富的数据结构,如字符串、哈希、列表、集合、有序集合等,提供了持久化、事务、Lua脚本、复制、高可用和分区等功能。
Redis为什么快
回答:
- 内存存储: 数据全部存储在内存中,读写速度非常快。
- 数据结构优化: 使用了高效的数据结构,如字典、跳表等。
- 单线程模型: 避免了多线程竞争,不需要加锁,减少了上下文切换的开销。
- I/O多路复用: 采用了epoll模型,可以同时处理大量客户端请求。
单线程模型有什么缺点,有什么不太适用的场景
回答: 缺点:
- CPU利用率: 无法充分利用多核CPU,CPU密集型任务性能不佳。
- 阻塞操作: 如果有阻塞操作,会阻塞整个线程,影响性能。
不适用的场景:
- <