【线性代数复习笔记】同济大学版第一章 行列式
1.二阶与三阶行列式
二阶行列式
二阶行列式便是主对角线上的两元素之积减去副对角线上两元素之积所得的差。
三阶行列式
简单的记忆方法:
实线连接元素(与实对角线平行)减去虚线连接相乘的元素(与副对角线平行)
2.全排列和对换
- 全排列:把n个不同的元素排成一列叫做这n个元素的全排列,n个不同元素的 所有排列种数为n!
- 排列的逆序数:选定一个排列为标准排列,当某一对元素的先后次序与标准排列的不同,则称该排列为这个排列的逆序,这个排列逆序数的总和为排列的逆序数。逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列.
这个以后再补充吧。。一时半会用不上。。
3.n阶行列式的定义
- 上(下)三角行列式:主对角线以下(上)的元素都为0的行列式。
- 对角行列式:主对角线以下和以上的元素都为О的行列式。
4.行列式性质
-
性质1:行列式与它的转置行列式相等.
-
性质2:对换行列式的两行(列),行列式变号.
-
性质2推论:推论如果行列式有两行(列)完全相同,则此行列式等于零.
-
性质3:性质3行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.
-
性质3推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面.
-
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零.
-
性质5:性质5若行列式的某一行(列)的元素都是两数之和,例如第i行的元素都是两数之和:
-
性质6:把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变.
5.行列式按行(列)展开
余子式和代数余子式
Aij为元aij的代数余子式.
其中的D是下面的形式:
这个定理叫做行列式按行(列)展开法则.