平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000) 第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。
Input示例
4 1 1 2 1 3 2 4 1
Output示例
1
思路:
既然在X轴上,那么不用管他是不是圆,直接转化为线段就可以了。在线段的基础上变回类似于1133题的变形,重要的是二分查找,自己爆搜了次TLE了
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
struct node
{
int l,r;
}a[50005];
int cmp(node a,node b)
{
return a.l<b.l;
}
int main()
{
int n;
cin>>n;
int x,y;
for(int i=1;i<=n;i++)
{
cin>>x>>y;
a[i].l=x-y;
a[i].r=x+y;
}
sort(a+1,a+1+n,cmp);
int sum=0;
for(int i=1;i<n;i++)
{
int tep=n-i;
/* for(int j=i+1;j<=n;j++)
{
if(a[i].r<a[j].l)
break;
tep--;
}
sum+=tep;
*/
int ans=n+1;
int l=i+1,r=n;
while(l<=r)
{
int mid=(l+r)/2;
if(a[i].r<a[mid].l)
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
sum+=n-ans+1;
}
cout<<sum<<endl;
return 0;
}