51nod-1278 相离的圆

100 篇文章 0 订阅
27 篇文章 0 订阅


基准时间限制:1 秒 空间限制:131072 KB 分值: 10  难度:2级算法题
 收藏
 关注
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000)
第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。
Input示例
4
1 1
2 1
3 2
4 1
Output示例
1

思路:

既然在X轴上,那么不用管他是不是圆,直接转化为线段就可以了。在线段的基础上变回类似于1133题的变形,重要的是二分查找,自己爆搜了次TLE了

#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
struct node
{
    int l,r;
}a[50005];
int cmp(node a,node b)
{
    return a.l<b.l;
}
int main()
{
    int n;
    cin>>n;
    int x,y;
    for(int i=1;i<=n;i++)
    {
        cin>>x>>y;
        a[i].l=x-y;
        a[i].r=x+y;
    }
    sort(a+1,a+1+n,cmp);
    int sum=0;
    for(int i=1;i<n;i++)
    {
        int tep=n-i;
/*        for(int j=i+1;j<=n;j++)
        {
             if(a[i].r<a[j].l)
             break;
             tep--;
        }
        sum+=tep;
 */
        int ans=n+1;
        int l=i+1,r=n;
        while(l<=r)
        {
            int mid=(l+r)/2;
            if(a[i].r<a[mid].l)
            {
                ans=mid;
                r=mid-1;

            }
            else
            {
                l=mid+1;
            }
        }
        sum+=n-ans+1;
    }
    cout<<sum<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值