[编程题] 堆棋子
时间限制:1秒
空间限制:32768K
小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.
输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数 第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9) 第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)
输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格 如样例所示: 对于1个棋子: 不需要操作 对于2个棋子: 将前两个棋子放在(1, 1)中 对于3个棋子: 将前三个棋子放在(2, 1)中 对于4个棋子: 将所有棋子都放在(3, 1)中
输入例子1:
4 1 2 4 9 1 1 1 1
输出例子1:
0 1 3 10
对于曼哈顿距离来讲,只可能出现在已有的X,Y组合上最近。
所以暴力枚举
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
ll x[55],y[55],ans[55];
ll inf=0x3f3f3f3f3f3f3f3f;
ll dis[55];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>x[i];
for(int i=1;i<=n;i++)
cin>>y[i];
for(int i=1;i<=n;i++)
ans[i]=inf;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
{
ll res=0;
for(int k=1;k<=n;k++)
dis[k]=abs(x[i]-x[k])+abs(y[j]-y[k]);
sort(dis+1,dis+1+n);
for(int k=1;k<=n;k++)
{
res+=dis[k];
ans[k]=min(ans[k],res);
}
}
}
cout<<ans[1];
for(int i=2;i<=n;i++)
cout<<" "<<ans[i];
}