[编程题] 堆棋子

[编程题] 堆棋子

时间限制:1秒

空间限制:32768K

小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.

输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数
第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9)
第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)


输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格

如样例所示:
对于1个棋子: 不需要操作
对于2个棋子: 将前两个棋子放在(1, 1)中
对于3个棋子: 将前三个棋子放在(2, 1)中
对于4个棋子: 将所有棋子都放在(3, 1)中

输入例子1:
4
1 2 4 9
1 1 1 1

输出例子1:
0 1 3 10
思路:

对于曼哈顿距离来讲,只可能出现在已有的X,Y组合上最近。

所以暴力枚举

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

typedef long long ll;
ll x[55],y[55],ans[55];
ll inf=0x3f3f3f3f3f3f3f3f;
ll dis[55];
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>x[i];
    for(int i=1;i<=n;i++)
        cin>>y[i];
    for(int i=1;i<=n;i++)
        ans[i]=inf;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++)
        {
            ll res=0;
            for(int k=1;k<=n;k++)
                dis[k]=abs(x[i]-x[k])+abs(y[j]-y[k]);
            sort(dis+1,dis+1+n);
            for(int k=1;k<=n;k++)
            {
                res+=dis[k];
                ans[k]=min(ans[k],res);
            }
        }
    }
    cout<<ans[1];
    for(int i=2;i<=n;i++)
        cout<<" "<<ans[i];

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值