题意:给1-N的一个排列,找出所有的(x, y, z) 使得x < z < y,求这样的元组有多少个?
题解:对于每个x,只需要找到比x靠后,而且比x大的数的个数,这样的组合数为:n*(n-1)/2
这里面有重复的情况:i < j < k, 而且a[i] < a[j] < a[k],那么对于y,只需要找到比y小且出现在y前面的数的个数,和比y大,且出现在y后边的数的个数。
树状数组统计x之前出现的比x小的个数,剩下的就全部可以算出来了。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
#define N 100010
typedef long long ll;
#define mod 100000007ll
int n, a[N];
inline int lowbit(int x) { return x & (-x); }
int sum(int x) {
int ret = 0;
while (x >= 1) {
ret += a[x];
x -= lowbit(x);
}
return ret;
}
void add(int x) {
while (x <= n) {
a[x]++;
x += lowbit(x);
}
}
int main() {
int T, t;
ll ans, s, p;
scanf("%d", &T);
for (int cas=1; cas<=T; cas++) {
scanf("%d", &n);
memset(a, 0, sizeof(a));
ans = 0, s = 0;
for (int i=0; i<n; i++) {
scanf("%d", &t);
p = sum(t);
ans = (ans + (ll)(n-t-i+p)*(n-t-i+p-1)/2) % mod;
s = (s + (ll)(n-t-i+p)*p) % mod;
add(t);
}
printf("Case #%d: %I64d\n", cas, (ans+mod-s) % mod);
}
return 0;
}