1. 问题描述
tensorflow中多个模型在测试阶段,出现测试速度越来越慢的情况,通过查阅资料发现,由于tensorflow的图是静态图,但是如果直接加在不同的图(即不同的模型),应该都会存在内存中,因此造成了测试速度越来越慢,甚至导致机器卡顿(博主在测试100个模型时,一般测试20个模型左右出现卡顿),因此有必要探究更快的测试速度方法。
2. 方法的解决
1) 如果采用对于每一个模型均在一个tf.Session()中,会报错。
该中方式的代码大致为:
-
for modelNumber in range(modelTotalNumber):
-
with tf.Session() as sess:
-
model_file = tf.train.latest_checkpoint( modelDir )
-
saver = tf.train.import( model_file + '.meta' ) ## load the Graph without weights
-
saver.restore(sess,
-
tf.train.latest_checkpoint( modelDir ))
-
###XXXXX predict code