tensorflow推理过程越来越慢

本文探讨了在TensorFlow中遇到的多个模型测试时速度逐渐变慢的状况,分析了原因并提出解决方案。通过创建独立Session或在每个模型加载前使用tf.reset_default_graph()来避免内存占用过多导致的性能下降。实践表明,这种方法可以有效提高多模型测试的效率。
摘要由CSDN通过智能技术生成

1. 问题描述

tensorflow中多个模型在测试阶段,出现测试速度越来越慢的情况,通过查阅资料发现,由于tensorflow的图是静态图,但是如果直接加在不同的图(即不同的模型),应该都会存在内存中,因此造成了测试速度越来越慢,甚至导致机器卡顿(博主在测试100个模型时,一般测试20个模型左右出现卡顿),因此有必要探究更快的测试速度方法。

2. 方法的解决

1) 如果采用对于每一个模型均在一个tf.Session()中,会报错。

该中方式的代码大致为:

 
  1. for modelNumber in range(modelTotalNumber):

  2. with tf.Session() as sess:

  3. model_file = tf.train.latest_checkpoint( modelDir )

  4. saver = tf.train.import( model_file + '.meta' ) ## load the Graph without weights

  5. saver.restore(sess,

  6. tf.train.latest_checkpoint( modelDir ))

  7.  
  8.  
  9. ###XXXXX predict code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值