初2数学-4. 2点之间的距离

若一个点坐标为(x1,y1), 另一点坐标为(x2,y2), 则其距离为:\sqrt{(x2-x1)^{2}+(y2-y1)^{2}}

【例1】正方形边长为4,P点沿着AC从A到C运动,速度为\sqrt{2}t/秒; Q点从C到Q运动,速度为1/秒。求运动过程中的某个时刻,有无可能三角形DPQ是等腰三角形,若有求出所有满足条件的t;

解题思路:以B点为原点,BC为X轴,BA为Y轴。先求出PQD的坐标,根据坐标求出两点之间的距离。

PQ^{2}=(4-2t)^{2}+(4-t)^{2}

PD^{2}=(4-t)^{2}+(t)^{2}

DQ^{2}=t^{2}+16

只要两两相等并删选不合理的解即可得到结果。

比如若PQ=PD : (4-2t)^{2}=(t)^{2};  t=4/3或t=4;

若PQ=DQ:化简:t^{2}-6t+4=0; t=3-\sqrt{5 }

若PD=DQ:得到: t=0;

【题目】:等边三角形ABC边长为4,D为BC的中心,连接AD。当E点从D运动到A的过程中,等边三角形BEF的F点离D之间的距离最短是多少?

【初中生的解法思路】

因E在DA之间运动,先看两端的情况:

先看E在D点的时候,F点运动到位于上面中间图片的G点;

再看E在A点的时候,F点运动到位于上面中间图片的C点;

(合理)估计E在DA之间运动时,F点在直线GC上运动,因此FD最短举例就是D到GC的垂线。

接下来重点就是围绕如何证明:所有F点都在GC上。

三角形ABE与三角形BCF全等(因AB=BC,BE=BF; <ABE=<CBF = 60-<EBD)所以<BCF=30度。

又因BD=DG=BD,所以<BGC=90度,<BCG=30度,所以F在BG上。

所以D到BG的垂线 = BG的一半= 1;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_34047402

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值