若一个点坐标为(x1,y1), 另一点坐标为(x2,y2), 则其距离为:
【例1】正方形边长为4,P点沿着AC从A到C运动,速度为/秒; Q点从C到Q运动,速度为1/秒。求运动过程中的某个时刻,有无可能三角形DPQ是等腰三角形,若有求出所有满足条件的t;
解题思路:以B点为原点,BC为X轴,BA为Y轴。先求出PQD的坐标,根据坐标求出两点之间的距离。
则
只要两两相等并删选不合理的解即可得到结果。
比如若PQ=PD : ; t=4/3或t=4;
若PQ=DQ:化简:;
若PD=DQ:得到: t=0;
【题目】:等边三角形ABC边长为4,D为BC的中心,连接AD。当E点从D运动到A的过程中,等边三角形BEF的F点离D之间的距离最短是多少?
【初中生的解法思路】
因E在DA之间运动,先看两端的情况:
先看E在D点的时候,F点运动到位于上面中间图片的G点;
再看E在A点的时候,F点运动到位于上面中间图片的C点;
(合理)估计E在DA之间运动时,F点在直线GC上运动,因此FD最短举例就是D到GC的垂线。
接下来重点就是围绕如何证明:所有F点都在GC上。
三角形ABE与三角形BCF全等(因AB=BC,BE=BF; <ABE=<CBF = 60-<EBD)所以<BCF=30度。
又因BD=DG=BD,所以<BGC=90度,<BCG=30度,所以F在BG上。
所以D到BG的垂线 = BG的一半= 1;