【数形结合】当天先到者等未到者20分钟,见面概率

【题目1】甲和乙约定周日早上在学校门口见面,当天先到者等未到者20分钟,超过20分钟对方未到就离开.甲乙均在12点到13点之间任意时刻到达学校门口,则两人可以碰面的概率是多少?

解答:

        假设甲同学到达学校时是12点后的x分钟这个时刻。

        乙同学则必须在12点后的y分钟,如果要见面,y必须在 [x-20, x+20]这个时间范围内。

        即: y>=x-20 且 y<=x+20.

        即y最多提前20分钟,最多延后20分钟。

        图上看:总的面积是60*60; 可能见面的区域面积:60*60 - 40*40

        即见面概率:(60*60-40*40)/(60*60)=5/9 = 55.56%.        

内容概要:本文主要介绍了一项关于四足机器人轨迹优化四足机器人轨迹优化研究(Matlab代码实现)的研究,重点在于利用Matlab代码实现轨迹优化算法。通过对四足机器人运动学与动力学模型的建立,结合优化算法(如非线性模型预测控制、智能优化算法等),实现机器人在复杂地形下的稳定行走与高效路径规划。文中详细阐述了优化目标的设计,包括步态稳定性、能耗最小化、关节力矩平滑性等,并通过Matlab仿真验证了所提方法的有效性和鲁棒性。此外,文档还列举了多个相关研究方向和技术应用,展示了该领域与其他智能控制、路径规划及多传感器融合技术的紧密联系。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能机器人、运动控制、路径规划等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于四足机器人步态生成与轨迹优化算法的开发与仿真验证;②为复杂环境下移动机器人运动控制提供解决方案;③支持科研教学中对非线性优化、模型预测控制等高级控制策略的学习与实践。; 阅读建议:建议读者结合提供的Matlab代码进行实际操作,深入理解轨迹优化的数学建模过程与求解方法,同时可参考文中提到的协同路径规划、多传感器融合等扩展内容,拓展研究思路。
这个问题描述的是一个概率模型,可以看作是两个独立事件的概率乘积。首,我们考虑两个人到达时间的分布: 1. 设每个人到达会面地点的时间是一个随机变量,我们可以假设它服从均匀分布,因为题目没有提供更具体的分布信息,所以假设他们最有可能在6点到7点之间任意时刻到达,区间长度为1小时。 2. 对于每个参与者来说,他/她按时到达(即在6:00到6:59之间)的概率是 \( \frac{1}{60} \)(一个小时有60分钟),迟到(即在7:00之后)的概率是 \( \frac{5}{60} = \frac{1}{12} \),因为需要等待20分钟才能离开,所以实际迟到的概率是 \( \frac{1}{12} + \frac{1}{60} = \frac{7}{60} \)。 接下来计算他们会面的概率。由于是两个人的事件,我们需要同时考虑他们都按时到达或都迟到的情况。两者互斥,因此会面的概率等于这两个事件概率的和: - 按时到达会面的概率 = \( (\frac{1}{60})^2 = \frac{1}{3600} \) - 都迟到并相互等待超过20分钟会面的概率 = \( (\frac{7}{60})^2 = \frac{49}{3600} \) 两者的总和就是他们会面的全部概率: \( P(\text{会面}) = \frac{1}{3600} + \frac{49}{3600} = \frac{50}{3600} = \frac{5}{360} \) 转换成小数形式大约是0.013889或1.3889%。 在R语言中,你可以用下面的代码来模拟这个过程并得到近似结果: ```R # 定义随机变量到达时间 arrive_time <- runif(1000000, min = 360, max = 390) # 6:00到7:00,假设单位是分钟 # 计算准时到达、迟到或错过的人数 on_time <- arrive_time <= 360 late <- arrive_time > 360 & arrive_time <= 380 missed <- arrive_time > 380 # 会面情况的计数 met_on_time <- sum(on_time & on_time) met_late <- sum(late & late) total_meetings <- met_on_time + met_late # 会面的概率 probability_meet = total_meetings / length(arrive_time) probability_meet ``` 这将给出一个接近理论值的结果。如果你想要精确到百分比,记得把结果除以100。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_34047402

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值