《应用商务统计分析》第六章 泊松回归

这篇博客通过泊松回归分析超市会员消费记录,研究历史光顾频率和消费金额对会员次月光顾次数的影响。结果表明,最近一月的购买行为对未来的预测能力最强,且光顾频数的影响大于消费金额。这为超市制定营销策略提供了依据。
摘要由CSDN通过智能技术生成

目录

一、目的

二、数据来源和相关说明

1、数据来源

2、数据信息

3、变量信息

三、描述性分析

1、描述统计

2、单因素分析

四、数据建模

1、全模型分析

2、模型选择

3、模型预测和评估

五、总结


一、目的

从超市会员消费记录中找出规律,并判断会员次月光顾超市的次数。

二、数据来源和相关说明

1、数据来源

来源于某家超市部分会员的详细消费记录。

import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# 参数设置
plt.rcParams['font.sans-serif']=['SimHei'] #中文
plt.rcParams['axes.unicode_minus'] = False #负号
filePath = r'E:\CH6'
fileName = r'crm.csv'

# 读取数据
df_raw =  pd.read_csv(open(os.path.join(filePath, fileName)))

2、数据信息

共3995条样本,包含7个变量。

print(df_raw.info())
print(df_raw.head())

3、变量信息

# 变量列表
str_cols = []
num_cols = ['exp3', 'exp2', 'exp1', 'freq3', 'freq2', 'freq1' ]
x_cols = str_cols + num_cols
y_col = 'freq0'

(1)自变量

  • freq1、freq2、freq3分别为会员第-1月、第-2月、第-3月光顾超市的频数。
  • exp1、exp2、exp3分别为会员第-1月、第-2月、第-3月的消费金额。

(2)因变量

  • freq0为会员第0月光顾超市的频数。

三、描述性分析

df_clean = df_raw.copy()

1、描述统计

从下述指标看,按平均水平来说(以算术平均计),每个月每位会员光顾该超市大约1次,消费金额为5-20元。

# 基本统计量
print(df_clean.describe().T)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值