【2023天池龙珠计划】机器学习训练营(三):LightGBM

一、概述

参考资料:https://tianchi.aliyun.com/notebook/170914

LightGBM 是 2017 年由微软推出的可扩展机器学习系统,是微软旗下 DMKT 的一个开源项目,由 2014 年首届阿里巴巴大数据竞赛获胜者之一柯国霖老师带领开发。它是一款基于 GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM 的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。

LightGBM 可以看作是 XGBoost 的升级豪华版,在获得与 XGBoost 近似精度的同时,又提供了更快的训练速度与更少的内存消耗。正如其名字中的 Light 所蕴含的那样,LightGBM 在大规模数据集上跑起来更加优雅轻盈,一经推出便成为各种数据竞赛中刷榜夺冠的神兵利器。

LightGBM 的主要优点:

  1. 简单易用。提供了主流的 Python、C++、R 语言接口,用户可以轻松使用 LightGBM 建模并获得相当不错的效果。
  2. 高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
  3. 鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
  4. LightGBM 直接支持缺失值与类别特征,无需对数据额外进行特殊处理

LightGBM 的主要缺点:

  1. 相对于深度学习模型无法对时空位置建模不能很好地捕获图像、语音、文本等高维数据
  2. 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先 LightGBM。

在本章中,将结合英雄联盟排位数据集重点学习数据的分析与处理过程。

二、主要代码流程

(一)库文件导入与数据获取

编写代码之前,先下载需要的数据集。

本次使用的数据集是 9881 场英雄联盟韩服钻石段位以上的排位比赛数据。
数据提供了在十分钟时的游戏状态,包括击杀数、死亡数、金币数量、经验值、等级……等信息。列 blueWins 是数据的标签代表了本场比赛是否为蓝队获胜

#下载需要用到的数据集
wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/8LightGBM/high_diamond_ranked_10min.csv

代码中导入需要的库文件

##  基础函数库
import numpy as np
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

读取数据文件

## 我们利用Pandas自带的read_csv函数读取并转化为DataFrame格式
df = pd.read_csv('./high_diamond_ranked_10min.csv')
y = df.blueWins
"""
## 利用.info()查看数据的整体信息
df.info()
df.head()
df.tail()
"""

(二)数据预处理

先分析一下数据集标签,看看是否存在数据不平衡问题。

y.value_counts()
"""
0    4949
1    4930
Name: blueWins, dtype: int64
数据集正负标签数量基本相同,不存在数据不平衡的问题。
"""

原始数据中,我们清除掉非特征列gameIdblueWins,剩下的就是我们需要的特征列。
当然,特征列中,也有一些属性是重复而不需要的,也需要进行清除。

比如 redGoldDiff2199 时,那么 blueGoldDiff 就必然为 -2199

## 标注特征列
drop_cols = ['gameId','blueWins']
x = df.drop(drop_cols, axis=1)

## 根据上面的描述,我们可以去除一些重复变量,比如只要知道蓝队是否拿到一血,我们就知道红队有没有拿到,可以去除红队的相关冗余数据。
drop_cols = ['redFirstBlood','redKills','redDeaths'
             ,'redGoldDiff','redExperienceDiff', 'blueCSPerMin',
            'blueGoldPerMin','redCSPerMin','redGoldPerMin']
x.drop(drop_cols, axis=1, inplace=True)

数据预处理在本章中是一个重点,在正式训练前,所有的数据预处理流程均在数据预处理流程部分进行讲述。

(三)模型训练与预测

初始化数据集,导入模型

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
data_target_part = y
data_features_part = x

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)

## 导入LightGBM模型
from lightgbm.sklearn import LGBMClassifier
## 定义 LightGBM 模型 
clf = LGBMClassifier()
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

使用模型进行预测

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

"""
The accuracy of the Logistic Regression is: 0.8447425028470201
The accuracy of the Logistic Regression is: 0.722165991902834
The confusion matrix result:
 [[714 300]
 [249 713]]
 我们可以发现共有 714 + 713 个样本预测正确,300 + 249 个样本预测错误。
"""

三、数据预处理流程

(一)小提琴图:

小提琴图,展示多组数据的分布状态以及概率密度
这种图表结合了箱形图和密度图的特征,主要用来显示数据的分布形状。

data = x
## 对数据进行归一化
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

fig, ax = plt.subplots(1,2,figsize=(15,5))

# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
               inner='quart', ax=ax[0], palette='Blues')
fig.autofmt_xdate(rotation=45)

data = x
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins',
               data=data, split=True, inner='quart', ax=ax[1], palette='Blues')
fig.autofmt_xdate(rotation=45)
plt.show()

输出的数据图如下:
在这里插入图片描述

从图中我们可以看出:

  • 击杀英雄数量越多更容易赢,死亡数量越多越容易输(bluekills 与 bluedeaths 左右的区别)。
  • 助攻数量与击杀英雄数量形成的图形状类似,说明他们对游戏结果的影响差不多。
  • 一血的取得情况与获胜有正相关,但是相关性不如击杀英雄数量明显。
  • 经济差与经验差对于游戏胜负的影响较大
  • 击杀野怪数量对游戏胜负的影响并不大。

关于上述代码需要进行如下知识的补充:

补充知识 1:melt()

这里对 melt() 进行一下说明。
该方法有四个输入:

  1. data:输入的数据变量
  2. id_vars:关键列
  3. var_name:融化后,原属性列名
  4. value_name:融化后,原属性列值

melt的具体效果如下图所示:
在这里插入图片描述

补充知识 2:subplots()

plt.subplots 解释_天上飞下一毛雪的博客-CSDN 博客

原文中的代码为:

fig, ax = plt.subplots(1,2,figsize=(15,5))

matplotlib 相关知识点归纳如下:

  1. 在 matplotlib 中,整个图像为一个Figure 对象
  2. 在 Figure 对象中可以包含一个或者多个 Axes 对象
  3. 每个 Axes 对象都是一个拥有自己坐标系统的绘图区域。

subplots 完整函数定义如下图:

def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
             subplot_kw=None, gridspec_kw=None, **fig_kw):

nrows,ncols:子图的行列数。

sharex, sharey:

  • 设置为 True 或者 ‘all’ 时,所有子图共享 x 轴或者 y 轴,
  • 设置为 False or ‘none’ 时,所有子图的 x,y 轴均为独立,
  • 设置为 ‘row’ 时,每一行的子图会共享 x 或者 y 轴,
  • 设置为 ‘col’ 时,每一列的子图会共享 x 或者 y 轴。

squeeze:

  • 默认为 True,是设置返回的子图对象的数组格式
  • 当为 False 时,不论返回的子图是只有一个还是只有一行,都会用二维数组格式返回他的对象。
  • 当为 True 时,如果设置的子图是(nrows=ncols=1),即子图只有一个,则返回的子图对象是一个标量的形式,如果子图有(N×1)或者(1×N)个,则返回的子图对象是一个一维数组的格式,如果是(N×M)则是返回二位格式。

fig_kw :

  • 所有其他关键字参数都传递给 figure()调用。
    如,设置 figsize=(21, 12) ,则设置了图像大小。

返回值

  1. fig: matplotlib.figure.Figure 对象
  2. ax:子图对象( matplotlib.axes.Axes)或者是他的数组

补充知识 3:seaborn

violinplot() 的输入,核心关注以下几个参数:

  1. x,Features,特征列名
  2. y,Values,特征列值
  3. hue,标签值
  4. ax,需要绘制的 Axes 对象。
# 绘制小提琴图
sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,
               inner='quart', ax=ax[0], palette='Blues')
# 横坐标是“特征列名”,文本内容较长,横向排布会引起不同列名的“叠影”,所以需要转45°。
fig.autofmt_xdate(rotation=45)

绘制的图片,以及图片与数据的关系如下:
seaborn小提琴图的绘制方法

(二)热力图:等级与经验特征

热力图,可以很好地反映各个特征之间的相关性。

plt.figure(figsize=(18,14))
sns.heatmap(round(x.corr(),2), cmap='Blues', annot=True)
plt.show()
"""
x.corr() 可以输出 N × N 矩阵,N为特征维度。
这里因为属性值较多,所以figsize设置为 “18×14”,还是比较大的。
round(),可以控制值域在[-1, 1]之间。
"""

输出热力图如下:
在这里插入图片描述

颜色越深代表特征之间相关性越强,我们剔除那些相关性较强的冗余特征。

# 去除冗余特征,比如 "blueAvgLevel" 与 "blueTotalExperience" 具有极高相关性0.9
drop_cols = ['redAvgLevel','blueAvgLevel']
x.drop(drop_cols, axis=1, inplace=True)

(三)散点图:眼位特征

散点图,与小提琴图相似,也可以用于展示多组数据的分布状态以及概率密度

我们构建了两个眼位有关的新特征(差值特征),画出了插眼数量的散点图。

sns.set(style='whitegrid', palette='muted')

# 构造两个新特征
x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']
x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']

data = x[['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(20,10))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()

在这里插入图片描述

发现不存在插眼数量与游戏胜负间的显著规律。猜测由于钻石分段以上在哪插眼在哪好排眼都是套路,所以数据中前十分钟插眼数拔眼数对游戏的影响不大。所以我们暂时先把这些特征去掉。

## 去除和眼位相关的特征
drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',
            'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']
x.drop(drop_cols, axis=1, inplace=True)

(四)条形统计图:KDA特征

x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']

x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].hist(figsize=(12,10), bins=20)
plt.show()

输出的条形统计图如下:
KDA特征的次数统计

由图可发现,KillsDiffassistsDiff 与其他特征的分布数据相比,具有明显变化。所以这两个特征应当进一步分析。

(五)散点图:KDA特征

之前构造两个新属性 killsDiffassistsDiff,需要进一步分析。
这里查看他们的散点图,可以发现其具有较为明显的相关性。

x['killsDiff'] = x['blueKills'] - x['blueDeaths']
x['assistsDiff'] = x['blueAssists'] - x['redAssists']

data = x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].sample(1000)
data_std = (data - data.mean()) / data.std()
data = pd.concat([y, data_std], axis=1)
data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')

plt.figure(figsize=(10,6))
sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)
plt.xticks(rotation=45)
plt.show()

在这里插入图片描述

可以发现上图中各个数据都具有较好的分析能力。

(六)对偶图:KDA特征

与热力图较为类似,但是热力图暴露的是统计特征(相关性)。
而对偶图则是展示的每个单体数据。

data = pd.concat([y, x], axis=1).sample(500)

sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists'], 
             hue='blueWins')

plt.show()

对偶图的部分展示如下(蓝色点代表 BlueWins0):
在这里插入图片描述

这里重点关注下图的红色部分,可以看出 KillsDiffassistsDiff 这两个属性分布会更居中一些。

对角线的图是怎么画出来的?分布更集中的原因是什么?分布更居中会更有利于模型训练吗?

在这里插入图片描述

(七)条形统计图、折线图:地图资源特征

构造两队之间是否拿到龙、是否拿到峡谷先锋、击杀大型野怪的数量差值。

x['dragonsDiff'] = x['blueDragons'] - x['redDragons']
x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']
x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']

data = pd.concat([y, x], axis=1)

eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()
dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()
heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()

fig, ax = plt.subplots(1,3, figsize=(15,4))

eliteGroup.plot(kind='bar', ax=ax[0])
dragonGroup.plot(kind='bar', ax=ax[1])
heraldGroup.plot(kind='bar', ax=ax[2])

print(eliteGroup)
print(dragonGroup)
print(heraldGroup)
"""
eliteDiff
-2    0.286301
-1    0.368772
 0    0.500683
 1    0.632093
 2    0.735211
Name: blueWins, dtype: float64
dragonsDiff
-1    0.374173
 0    0.500000
 1    0.640940
Name: blueWins, dtype: float64
heraldsDiff
-1    0.387729
 0    0.498680
 1    0.595046
Name: blueWins, dtype: float64
"""

plt.show()

数据图显示如下,可发现在游戏的前期拿到龙比拿到峡谷先锋更容易获得胜利。拿到大型野怪的数量和胜率也存在着强相关。
在这里插入图片描述

编写 towerDiff 属性,查看该属性的相关统计信息。

x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']

data = pd.concat([y, x], axis=1)

towerGroup = data.groupby(['towerDiff'])['blueWins']
print(towerGroup.count())
print(towerGroup.mean())
"""
towerDiff
-2      27
-1     347
 0    9064
 1     406
 2      28
 3       6
 4       1
Name: blueWins, dtype: int64
towerDiff
-2    0.185185
-1    0.216138
 0    0.498124
 1    0.741379
 2    0.964286
 3    1.000000
 4    1.000000
Name: blueWins, dtype: float64
"""

fig, ax = plt.subplots(1,2,figsize=(15,5))

towerGroup.mean().plot(kind='line', ax=ax[0])
ax[0].set_title('Proportion of Blue Wins')
ax[0].set_ylabel('Proportion')

towerGroup.count().plot(kind='line', ax=ax[1])
ax[1].set_title('Count of Towers Destroyed')
ax[1].set_ylabel('Count')

补充知识4:groupby()

使用groupby().count(),可以统计某个特征的值域,并统计各个取值的样本个数

print(data.groupby(['towerDiff']).count())
"""
           blueWins  blueFirstBlood  blueKills  blueDeaths  blueAssists  \
towerDiff                                                                 
-2               27              27         27          27           27   
-1              347             347        347         347          347   
 0             9064            9064       9064        9064         9064   
 1              406             406        406         406          406   
 2               28              28         28          28           28   
 3                6               6          6           6            6   
 4                1               1          1           1            1
"""

使用groupby().mean(),可以统计某个特征的值域,并统计各个取值的概率

print(data.groupby(['towerDiff']).mean())
"""
           blueWins  blueFirstBlood  blueKills  blueDeaths  blueAssists  \
towerDiff                                                                 
-2         0.185185        0.222222   4.777778    9.481481     5.296296   
-1         0.216138        0.337176   4.789625    8.345821     5.152738   
 0         0.498124        0.501986   6.119594    6.094329     6.594771   
 1         0.741379        0.711823   8.568966    5.155172     8.830049   
 2         0.964286        0.678571   9.857143    4.285714    10.642857   
 3         1.000000        0.833333  10.500000    4.500000     7.333333   
 4         1.000000        1.000000  14.000000    3.000000    14.000000   
"""

四、LightGBM特征分析方法

(一)查看feature_importances_

在完成模型训练、模型预测后,可以查看LightGBM模型,各个特征的重要度。

sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

在这里插入图片描述
可以发现,总经济差距等特征,助攻数量、击杀死亡数量等特征都具有很大的作用。插眼数、推塔数对模型的影响并不大。

(二)查看gainsplit

初次之外,我们还可以使用LightGBM中的下列重要属性来评估特征的重要性。

  • gain:当利用特征做划分的时候的评价基尼指数
  • split:是以特征用到的次数来评价
from sklearn.metrics import accuracy_score
from lightgbm import plot_importance

def estimate(model,data):

    #sns.barplot(data.columns,model.feature_importances_)
    ax1=plot_importance(model,importance_type="gain")
    ax1.set_title('gain')
    ax2=plot_importance(model, importance_type="split")
    ax2.set_title('split')
    plt.show()
def classes(data,label,test):
    model=LGBMClassifier()
    model.fit(data,label)
    ans=model.predict(test)
    estimate(model, data)
    return ans
 
ans=classes(x_train,y_train,x_test)
pre=accuracy_score(y_test, ans)
print('acc=',accuracy_score(y_test,ans))

输出结果图如下:
在这里插入图片描述

五、LightGBM参数调整

LightGBM中包括但不限于下列对模型影响较大的参数:

  1. learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。
  2. num_leaves:系统默认为32。这个参数控制每棵树中最大叶子节点数量。
  3. feature_fraction:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
  4. max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。

(一)网格搜索调参

## 从sklearn库中导入网格调参函数
from sklearn.model_selection import GridSearchCV

## 定义参数取值范围
learning_rate = [0.1, 0.3, 0.6]
feature_fraction = [0.5, 0.8, 1]
num_leaves = [16, 32, 64]
max_depth = [-1,3,5,8]

parameters = { 'learning_rate': learning_rate,
              'feature_fraction':feature_fraction,
              'num_leaves': num_leaves,
              'max_depth': max_depth}
model = LGBMClassifier(n_estimators = 50)

## 进行网格搜索
clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=3, n_jobs=-1)
clf = clf.fit(x_train, y_train)

查看网格搜索最好参数

## 网格搜索后的最好参数为
clf.best_params_
"""
{'feature_fraction': 1, 'learning_rate': 0.1, 'max_depth': 3, 'num_leaves': 16}
"""

使用最好参数进行训练

## 在训练集和测试集上分布利用最好的模型参数进行预测

## 定义带参数的 LightGBM模型 
clf = LGBMClassifier(feature_fraction = 0.8,
                    learning_rate = 0.1,
                    max_depth= 3,
                    num_leaves = 16)
# 在训练集上训练LightGBM模型
clf.fit(x_train, y_train)

train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
"""
The accuracy of the Logistic Regression is: 0.7440212577502214
The accuracy of the Logistic Regression is: 0.7317813765182186
The confusion matrix result:
 [[722 289]
 [241 724]]
"""

可以看到网格搜索后,再次训练得出的正确率明显提升。

(二)LightGBM重要参数

PART1:基本参数调整

  1. num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于 2 m a x _ d e p t h 2^{max\_depth} 2max_depth,以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。

  2. min_data_in_leaf 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际应用中, 对于大数据集, 设置其为几百或几千就足够了.

  3. max_depth 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射。

PART2:针对训练速度的参数调整

  1. 通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。
  2. 通过设置 feature_fraction 参数来使用特征的子抽样。
  3. 选择较小的 max_bin 参数。
  4. 使用 save_binary 在未来的学习过程对数据加载进行加速。

PART3:针对准确率的参数调整

  1. 使用较大的 max_bin (学习速度可能变慢)
  2. 使用较小的 learning_rate 和较大的 num_iterations
  3. 使用较大的 num_leaves (可能导致过拟合)
  4. 使用更大的训练数据
  5. 尝试 dart 模式

PART4:针对过拟合的参数调整

  1. 使用较小的 max_bin
  2. 使用较小的 num_leaves
  3. 使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
  4. 通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
  5. 通过设置 feature_fraction 来使用特征子抽样
  6. 使用更大的训练数据
  7. 使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
  8. 尝试 max_depth 来避免生成过深的树

六、总结

LightGBM 和 XGBoost 的核心算法逻辑相同,都是串联多个决策树模型来共同进行决策。LightGBM的基模型是CART回归树,它有两个特点:

  1. CART树,是一颗二叉树。
  2. 回归树,最后拟合结果是连续值。

就使用方法来说,LightGBM与XGBoost并无二致,但在调参上可能有一些区别。
除了使用方法,在本题中使用的英雄联盟数据集,是一个较为综合的数据集,在数据预处理阶段,涉及到了大量的数据分析方法,借助这些良好的数据分析方法,可以更好地筛选掉不合适的特征,还可以组合出更适合使用的新特征。当然,LightGBM本身也提供了特征分析方法(在训练完成后),可以结合起来使用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值