喜欢的话请关注我们的微信公众号~《 你好世界炼丹师》。
- 公众号主要讲统计学,数据科学,机器学习,深度学习,以及一些参加Kaggle竞赛的经验。
- 公众号内容建议作为课后的一些相关知识的补充,饭后甜点。
- 此外,为了不过多打扰,公众号每周推送一次,每次4~6篇精选文章。
微信搜索公众号:你好世界炼丹师。期待您的关注。
KS(不需要两组数据相同shape)
- 奇怪之处:有的地方也叫KL
- KS距离,相对熵,KS散度
- 当P(x)和Q(x)的相似度越高,KS散度越小
- KS散度主要有两个性质:
(1)不对称性
不对称性尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即D(P||Q)!=D(Q||P)
(2)非负性
相对熵的值是非负值,即D(P||Q)>0

from scipy.stats import ks_2samp
beta=np.random.beta
KS与JS散度详解

最低0.47元/天 解锁文章
699

被折叠的 条评论
为什么被折叠?



