无人机slam定位算法调研

1.相关博客,知乎,网页

1.室内无源定位—激光SLAM在无人机上的飞行测试

2.高速飞行的无人机用SLAM怎样导航

3.【泡泡图灵智库】面向无人机的高效双目SLAM

2.相关论文

无人机景象匹配视觉导航技术综述

四旋翼无人机

四旋翼无人机实现飞行控制、避障、路径规划以及抓取等各种复杂任务的基础和前提是可以准确的定位。目前应用较多的定位方法有三类:一类是基于外部设备提供精确的位置信息, 主要包括GPS和运动捕捉,一类是光流法进行飞行导航和壁障, 通过光流算法对机器人进行视觉运动测量和相对运动感知,另一类是基于四旋翼无人机自身对环境进行同步定位与制图 (SLAM) , 是通过传感器还原环境概况并同时定位自身在地图中的位置来实现导航。
其中在室外,GPS+IMU为主流算法,得到了较为广泛的应用。而光流法只能确定相对位姿移动,无法确定绝对位置,所以一般用来作室内稳定悬停。SLAM方法需要实时构建地图,分为基于激光雷达的激光slam和基于单目,双目或RGBD相机的视觉slam,在室内定位的场景下,已经有了很多相关的研究,但是在商用无人机的应用上还应用的不多。
基于视觉slam方法里面,又有基于VO(视觉里程计)和VIO(惯性视觉里程计)的,基于VO的方法中,在无人机上应用比较多的框架是SVO。这是苏黎世大学Scaramuzza教授的实验室,在2014年发表的一种视觉里程计算法。该方法在飞行实验中跟踪了84 m距离后位置误差仍然控制在±0.1 m以内。速度可以到达上百帧每秒,是目前视觉slam中比较适用于无人机上的一种方法。
而在基于VIO的方法中,香港科技大学开源了一个VIO算法名字是VINS-Mono,是用紧耦合方法实现的,通过单目+IMU恢复出尺度,效果非常棒。

INS/GPS组合导航系统

目前几乎所有的无人机定位导航都会采用这种组合方式。组合的优点表现在:对惯导系统可以实现惯性传感器的校准、惯导系统的空中对准、惯导系统高度通道的稳定等,从而可以有效地提高惯导系统的性能和精度;对GPS系统来说,惯导系统的辅助可以提高其跟踪卫星的能力,提高接收机动态特性和抗干扰性。另外,INS/GPS综合还可以实现GPS完整性的检测,从而提高可靠性。另外,INS/GPS组合可以实现一体化,把GPS接收机放入惯导部件中,以进一步减少系统的体积、质量和成本,便于实现惯导和GPS同步,减小非同步误差。
INS/GPS组合导航系统是目前多数无人飞行器所采用的主流自主导航技术。美国的全球鹰和捕食者无人机都是采用这种组合导航方式。

3.视觉影像匹配定位技术

无人机景象匹配导航系统如图 1 所示, 在获取目的地后通过卫片、航片进行初步的路径规划, 随后选取该规划航路上的适配区通过校正获得基准图, 再将视觉传感器获得的实时图与基准图进行匹配,实现导航与定位. 它的核心是图像匹配算法, 其性能好坏直接决定了导航系统的性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值