KCF(Henrique大神)代码大体思路

系数获取及初始计算

1. 通过大神给出的视频文件及相应的.txt文本,能得到pos及target_sz(目标的初始位置及大小)
2. 主函数给出padding(相对于目标大小的附加区域)
所以得到最开始的窗口大小window_sz

高斯标签生成及反傅里叶

1. 计算高斯标签的带宽output_sigma
2. 由[gaussian_shaped_labels.m]生成高斯标签并反傅里叶得yf
3. 对yf加汉宁窗,减少频谱损失

跟踪结果可视化

[show_video.m]

逐帧处理视频

第一帧

1.由pos及window_sz通过[get_subwindow.m]得到检测区域patch
2.通过[get_features.m]对patch区域进行特征提取,得xf
3.通过[gaussian_correlation.m]进行核相关(高斯核)操作由xf得到kf

4.岭回归计算分类器参数alphaf
5.得到下次决定patch区域的pos

第二帧及以后

1.由pos及window_sz通过[get_subwindow.m]得到检测区域patch
2.通过[get_features.m]对patch进行特征提取,得zf
3.通过[gaussian_correlation.m]进行核相关(高斯核)操作由上一帧的xf和这一帧的zf得到kzf

4.求patch中最大相应并确定下一帧训练的pos
5.由新获得的pos通过[get_subwindow.m]得到patch
6.通过[get_features.m]对patch区域进行特征提取,得xf
7.通过[gaussian_correlation.m]进行核相关(高斯核)操作由xf得到kf
8.岭回归计算分类器参数alphaf

9.更新下次检测的alphaf和xf
10.将本次训练的pos保存为下一帧的检测用到的pos
【注:第n帧的训练与第n+1帧的检测,使用同一patch】

特别提醒

本文对参考文献1中的KCF version 2的[tracker.m]进行了详细的说明,[run_tracker.m]负责设置参数,加载视频信息和计算精度。

参考文献及网址

1.http://www.robots.ox.ac.uk/~joao/circulant/index.html
2.https://blog.csdn.net/sinat_27318881/article/details/52873376
3. https://blog.csdn.net/crazyice521/article/details/53525366
4.https://blog.csdn.net/weixin_39467358/article/details/83304082
5.https://blog.csdn.net/weixin_40799815/article/details/82389858

## Tracking with Kernelized Correlation Filters Code author : Tomas Vojir ________________ This is a C++ reimplementation of algorithm presented in "High-Speed Tracking with Kernelized Correlation Filters" paper. For more info and implementation in other languages visit the [autor's webpage!](http://home.isr.uc.pt/~henriques/circulant/). It is extended by a scale estimation (use several *7* different scales steps) and by a RGB (channels) and Color Names [2] features. Data for Color Names features were obtained from [SAMF tracker](https://github.com/ihpdep/samf). It is free for research use. If you find it useful or use it in your research, please acknowledge my git repository and cite the original paper [1]. The code depends on OpenCV 2.4+ library and is build via cmake toolchain. _________________ Quick start guide for linux: open terminal in the directory with the code $ mkdir build; cd build; cmake .. ; make This code compiles into binary **kcf_vot** ./kcf_vot - using VOT 2014 methodology (http://www.votchallenge.net/) - INPUT : expecting two files, images.txt (list of sequence images with absolute path) and region.txt with initial bounding box in the first frame in format "top_left_x, top_left_y, width, height" or four corner points listed clockwise starting from bottom left corner. - OUTPUT : output.txt containing the bounding boxes in the format "top_left_x, top_left_y, width, height" ./kcf_trax - using VOT 2014+ trax protocol (http://www.votchallenge.net/) - require [trax](https://github.com/votchallenge/trax) library to be compiled with opencv support and installed. See trax instruction for compiling and installing. ___________ Performance | | **VOT2016 - baseline EAO** | **VOT2016 - unsupervised EAO** | [**TV77**](http://cmp.felk.cvut.cz/~vojirtom/dataset/index.html) Avg. Recall | |:---------------|:--------------:|:------------------:|:----------------:| | kcf |0.1530 | 0.3859 | 51% | | skcf |0.1661 | 0.4155 | 56% | | skcf-cn |0.178 | 0.4136 | 58% | | kcf-master |**0.1994** | **0.4376** | **63%** | __________ References [1] João F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista, “High-Speed Tracking with Kernelized Correlation Filters“, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015 [2] J. van de Weijer, C. Schmid, J. J. Verbeek, and D. Larlus. "Learning color names for real-world applications." TIP, 18(7):1512–1524, 2009. _____________________________________ Copyright (c) 2014, Tomáš Vojíř Permission to use, copy, modify, and distribute this software for research purposes is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. __________________ Additional Library NOTE: The following files are part of Piotr's Toolbox, and were modified for usage with c++ src/piotr_fhog/gradientMex.cpp src/piotr_fhog/sse.hpp src/piotr_fhog/wrappers.hpp You are encouraged to get the [full version of this library here.](http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html) ______________________________________________________________________________ Copyright (c) 2012, Piotr Dollar All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值