### 使用MATLAB实现LIDC-IDRI数据集中肺结节的分类
为了在MATLAB中实现LIDC-IDRI数据集内肺结节的有效分类,可以采用多种策略和技术。这里介绍一种基于特征提取和机器学习模型的方法。
#### 数据预处理
首先加载并准备用于训练的数据集。由于提到的数据已经预先裁剪为64×64像素大小[^2],这一步骤相对简单:
```matlab
% 加载图像文件夹路径下的所有png格式图片作为输入样本
imageFolder = 'path_to_your_prepared_dataset';
imds = imageDatastore(imageFolder, ...
'IncludeSubfolders', true, ...
'LabelSource', 'foldernames');
```
接着划分训练集与测试集以便后续评估性能:
```matlab
[trainImages,testImages] = splitEachLabel(imds,0.8,'randomized'); % 80%-20%比例随机分配给训练组和验证组
```
#### 特征工程
对于每张CT扫描切片图,计算一组描述其纹理特性的统计量或其他形态学指标来表征潜在病灶区域。常用的技术包括但不限于灰度共生矩阵(GLCM),局部二值模式(LBP)以及Hu矩等。
```matlab
function features = extractFeatures(img)
glcm = graycomatrix(rgb2gray(img),...
'Offset',[0 1; -1 1; -1 0; -1 -1]);
stats = graycoprops(glcm);
% 提取更多类型的特征向量可提高识别精度
features = [
mean([stats.Contrast]),
mean([stats.Correlation]),
mean([stats.Energy ]),
mean([stats.Homogeneity])
];
end
```
上述函数`extractFeatures()`定义了一个简单的GLCM特性抽取过程[^1]。
#### 构建分类器
利用支持向量机(SVM)或者其他合适的监督式算法构建预测模型。在此之前需先获取标签信息并与对应的影像特征关联起来形成完整的训练样本集合。
```matlab
% 假设已知正负类别标记存储于cell数组labels中
positiveIdx = cellfun(@(x) strcmp(x,'Positive'), labels);
negativeIdx = ~positiveIdx;
posFeats = arrayfun(@extractFeatures, trainImages.Files(positiveIdx)', 'UniformOutput', false);
negFeats = arrayfun(@extractFeatures, trainImages.Files(negativeIdx)', 'UniformOutput', false);
trainData = cat(1,posFeats{:}, negFeats{:});
classLabels = [ones(length(posFeats),1); zeros(length(negFeats),1)];
SVMModel = fitcsvm(trainData,classLabels,...
'KernelFunction','linear',...
'Standardize',true);
```
这段代码片段展示了如何创建线性核的支持向量机,并通过标准化后的特征来进行拟合操作[^3]。
最后,在独立的测试子集上应用所得到的最佳参数配置完成最终评价工作。
```matlab
testFeats = cellfun(@extractFeatures, testImages.ReadFcn(testImages.Files)', 'UniformOutput',false);
predictedScores = predict(SVMModel,[testFeats{:}]);
confusionchart(double(strcmp(labels{testImages.Labels},'Positive')), predictedScores>0.5);
```
此部分实现了对新实例进行打分并将结果可视化展示出来。