视觉slam
文章平均质量分 57
一抹烟霞
这个作者很懒,什么都没留下…
展开
-
ORBSLAM2`/usr/bin/ld: CMakeFiles/RGBD.dir/src/ros_rgbd.cc.o: undefined reference to symbol ‘_ZN5boos
可以直接在ORBSLAM2/Examples/ROS/ORBSLAM2下的Cmakelists.txt中添加一行,-lboost_system set(LIBS ${OpenCV_LIBS} ${EIGEN3_LIBS} ${Pangolin_LIBRARIES} ${PROJECT_SOURCE_DIR}/../../../Thirdparty/DBoW2/lib/libDBoW2.so ${PROJECT_SOURCE_DIR}/../../../Thir原创 2021-04-19 16:29:41 · 477 阅读 · 0 评论 -
ORB_SLAM3原理源码解读系列(4)——视觉词袋模型
文章目录一、词袋模型的引出二、原理三、实现步骤3.1 生成词袋3.2 用词表示图像四、vocabulary tree(字典)4.1 生成字典4.2 使用字典一、词袋模型的引出最初的Bag of words,也叫做“词袋”,在信息检索中,Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现.也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立选择的。例如有如下两原创 2021-04-09 21:39:52 · 579 阅读 · 0 评论 -
使用Eigen实现四元数、欧拉角、旋转矩阵、旋转向量之间的转换
文章目录一、旋转向量1.1 初始化旋转向量1.2 旋转向量转旋转矩阵1.3 旋转向量转欧拉角(xyz,即RPY)1.4 旋转向量转四元数二、旋转矩阵2.1 初始化旋转矩阵2.2 旋转矩阵转旋转向量2.3 旋转矩阵转欧拉角(xyz,即RPY)2.4 旋转矩阵转四元数三、欧拉角3.1 初始化欧拉角(xyz,即RPY)3.2 欧拉角转旋转向量3.3 欧拉角转旋转矩阵3.4 欧拉角转四元数四、四元数4.1 初始化四元数4.2 四元数转旋转向量4.3 四元数转旋转矩阵4.4 四元数转欧拉角(xyz,即RPY)Ve原创 2021-02-04 16:54:07 · 6723 阅读 · 0 评论 -
卡方分布(Chi-squared)外点(outlier)剔除
文章目录误差定义阈值选取误差定义outlier、外点、野值会严重影响SLAM的精度,因此必须把它们剔除。常用的做法是,计算一个误差,当这个误差大于设定阈值的时候就认为其为外点。就特征点法的视觉SLAM而言,一般会计算重投影误差。具体而言,记 u\mathbf uu为特征点的2D位置,u‾\overline{\mathbf{u}}u为由地图点投影到图像上的2D位置。重投影误差为重投影误差服从高斯分布其中,协方差σ\sigmaσ一般根据特征点提取的金字塔层级确定。具体的,记提取ORB特征时,图像金原创 2021-01-14 22:46:44 · 1634 阅读 · 0 评论 -
点云投影为深度图
文章目录一、原理二、“透射”问题的解决——使用灰度图形态学滤波![在这里插入图片描述](https://img-blog.csdnimg.cn/20200820163833179.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MjEzMjYw,size_16,color_FFFFFF,t_70#pic_center)一、原理上一篇我原创 2020-08-20 16:39:44 · 6452 阅读 · 1 评论 -
图像畸变矫正
//// Created by Qian.//#include <opencv2/opencv.hpp>#include <string>using namespace std;string image_file = "../test.png"; // 请确保路径正确int main(int argc, char **argv) { // 本程序需要你自己实现去畸变部分的代码。尽管我们可以调用OpenCV的去畸变,但自己实现一遍有助于理解。...原创 2020-08-20 16:22:04 · 1625 阅读 · 0 评论 -
双目3D视觉
文章目录一、双目模型二、像素匹配方法2.1 SAD法2.2 OpenCV自带的API一、双目模型这里只讨论最简单的情况,两个相机内参相同, 两个成像平面在相同平面上,同一水平高度上二、像素匹配方法2.1 SAD法结果如下:#!/usr/bin/python3# coding=utf-8import numpy as npimport cv2import matplotlib.pyplot as plt# 从CSV读取灰度图imgL和imgRprint('loading ima原创 2020-08-20 16:13:53 · 1302 阅读 · 1 评论 -
针孔相机模型与深度图转换成点云
文章目录一、原理:针孔相机模型1.1 针孔相机模型推导1.2 实例二、深度图转换成点云一、原理:针孔相机模型1.1 针孔相机模型推导相机结构一般用如下透镜模型解释, 穿过镜头中心的光线没有改变方向,镜头中心称为“光心”透镜模型可以简化为针孔模型——将透镜替换成小孔光心对应小孔中心一般为了分析简单,将成像平面画在对称位置,这样图像不再颠倒。空间的3D点和图像传感器上的位置关系通过下面的图给出传感器平面上的图像点看成是从空间点(X,Y,Z)到原点的连线和传感器平面的交点利用相似三角原创 2020-08-20 15:52:30 · 630 阅读 · 0 评论