数学
文章平均质量分 60
一抹烟霞
这个作者很懒,什么都没留下…
展开
-
SVD分解求解超定方程Ax=0
$Ax = 0 $ 对A做SVD分解,得UΣVTx=0U\Sigma V^Tx =0UΣVTx=0因为是超定方程,一般无法等于0,问题转换为求最小值 =∣∣UΣVTx∣∣min||U\Sigma V^Tx||_{min}∣∣UΣVTx∣∣min因为UUU是一个正交矩阵:正交变换不改变矩阵的秩, 特征值, 行列式, 迹 所以有:即Ax=0的SVD解是V的最后一列...原创 2021-09-30 21:07:58 · 2505 阅读 · 8 评论 -
已知sim3相似变换矩阵,如何求解出R, s, t ,从sim3相似变换矩阵中恢复和获得尺度、旋转、平移
如果已知如下这种sim3相似变换矩阵,如何求解出R, s, t ?首先我们知道sim3变换的矩阵具有形式如下:相似变换矩阵只是在旋转矩阵前面乘了一个常数 s要从一个 4 × 4 的相似变换矩阵中分离 t很容易,直接取出矩阵对应位置的值即可。但是要分离 s , R 需要做一些非常简单的矩阵运算:...转载 2021-04-21 23:56:38 · 393 阅读 · 0 评论 -
奇异值分解(SVD)与线性最小二乘问题
文章目录一、奇异值分解(SVD)原理1.1 回顾特征值和特征向量1.2 SVD的定义1.3 求出SVD分解后的U,Σ,V矩阵1.4 SVD计算举例1.5 SVD的一些性质1.6 SVD用于PCA二、线性最小二乘问题2.1 最小二乘问题复习2.2 广义逆矩阵2.2 奇异值分解与线性最小二乘问题参考链接打赏一、奇异值分解(SVD)原理1.1 回顾特征值和特征向量我们首先回顾下特征值和特征向量的定义如下:Ax=λxAx=λxAx=λx其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A原创 2021-04-11 18:08:42 · 1733 阅读 · 0 评论 -
主流卡尔曼滤波推导——KF、EKF、IKF、UKF、ESKF
文章目录一、高斯分布1.1 高斯概率密度函数1.2 联合高斯概率密度函数1.3 高斯随机变量的线性变换二、滤波器基本原理2.1 贝叶斯滤波三、卡尔曼滤波3.1 普通卡尔曼滤波器 (KF)3.2 扩展卡尔曼滤波(EKF)一、高斯分布1.1 高斯概率密度函数一维情况下, 高斯概率密度函数表示为:其中μ\muμ为均值, σ2\sigma^2σ2为方差。多维情况下, 高斯概率密度函数表示为其中μ\muμ为均值, 方差为Σ\SigmaΣ 。1.2 联合高斯概率密度函数1.3 高斯随机变量的线性原创 2021-04-07 10:42:35 · 2838 阅读 · 0 评论 -
奇异值分解方法求解最小二乘问题的原理
文章目录一、奇异值分解(SVD)原理1.1 回顾特征值和特征向量1.2 SVD的定义1.3 求出SVD分解后的U,Σ,V矩阵1.4 SVD计算举例1.5 SVD的一些性质二、线性最小二乘问题2.1 最小二乘问题复习2.2 奇异值分解与线性最小二乘问题参考链接打赏一、奇异值分解(SVD)原理1.1 回顾特征值和特征向量我们首先回顾下特征值和特征向量的定义如下:Ax=λxAx=λxAx=λx其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应原创 2020-06-16 18:31:16 · 2009 阅读 · 2 评论