暑期实习算法岗面经

抖音日常实习 2月底

一面

  1. 算法题:全排列。
    [a,b,c]求所有排列,用深度优先遍历可求解。
  2. 算法题: 给定一个有序数组和target,如果能找到target则返回索引,找不到则返回应插入的下标。
    可以用二分查找做。
  3. 问项目:问得很细,然后由项目引申了一些算法知识
  • 用户/物品冷启动的策略有哪些
  • 加入了一个召回理由后,如何评估对冷启动的效果
  • 如何解决新物品的召回和排序
  • 用户和物品画像怎么做
  • 正负样本不均衡的问题怎么解决
  • 正负样本不均衡的话,AUC会失效么,AUC物理意义是什么
  • 过/欠采样后,分布是否会有偏移
  • 时间序列异常检测的流程
  • 随机森林和逻辑回归的原理,这两者输入有何区别?
  1. c++什么程度,平时代码写的多吗
  2. 介绍了工作的情况,大概是一半时间python训练模型,一半时间c++修改推荐架构
  3. 开放题:你即将面试100家公司,每一家公司面试完会给你一个工资package,你只能当场选择接受或者不接受,接受后就不能毁约(不能选择后面的offer),问如何设定策略让自己package最大化。

二面

  1. 上来就写题
    写判断链表是否有环(快慢指针)
    进一步判断环的起点(链表起点和相遇点一起走,走到一起的时候就就恰好是起点)
    证明为什么恰好是起点
    在这里插入图片描述
  2. auc是什么,如果正样本减少一倍,写出公式(我只知道auc正负样本不均衡的情况下,基本auc不变,我当时的理解是tpr只和正样本有关,fpr只和负样本有关,所以和正负样本比例无关,但是写公式就有点懵了)
  3. 介绍p和r,pr有什么问题,什么情况用pr什么情况用auc(我拿癌症99:1举例)

阿里提前批 二/三月

支付宝 通过

支付宝这边算法主要以应用为主,很少做基础研究,我之前做过一些AIops时序的工作,他说和他们比较匹配,然后一二面都聊得比较愉快,很快就通过了提前批。

一面

  1. 问项目
    主要就是我挨个介绍,他提问
  2. 和我介绍了他们的工作内容

二面

  1. 问项目
  • 我介绍项目,他提问
  • Mapreduce的工作原理
  • 在搜狗实习每天数据量处理多少,如何处理数据偏移的问题
  1. 讨论了一下校招正式流程开启后,我选择哪个部门的问题

阿里云弹性计算 通过

一面

  1. 问项目
  • 介绍一个收获最大的项目
  • 银行数据是什么样的结构
  • 我是如何提取时序特征的,为什么这么做
  • 你提到你设计了两个算法,那你有考虑后续的改进吗,如何落地如何进一步提高
  • C++会吗,介绍一下多态
  • python的字典是如何实现的
  • 如何解决哈希冲突
  • 给你两个文件,每个文件内有100万个不重复的电话号码,如何求两个文件共有的电话号码
  • 排序算法常见的有哪些,复杂度如何
  • python可以用多线程吗,原理是什么,工作中用到过多进程的,如何解决通信问题
  1. 介绍了一下他们的工作
    阿里云弹性计算部门是最核心的部门,这边主要以开发为主,算法为辅,算法会涉及推荐和负载均衡的问题。
  2. 给了一个网址让写代码,不是算法题,而是一个具体的应用题。给我了他们实际中会遇到的云服务器的数据,让完成两个子功能,其实就是数据处理。

1688(杭州) 通过

一面

  1. 自我介绍
  2. 常用的召回算法有哪些
  3. 常用的排序算法有哪些
  4. 讲一下如何用graph embedding做召回
  5. graph embedding中如何做负采样
  6. 讲一下深度兴趣网络的细节
  7. 多目标优化有了解吗
  8. 如何同时对视频、图文做混合排序,视频、图文的特征不完全一致
  9. 负样本如何有效利用
  10. 说一下常见排序算法的复杂度
  11. 给你发个链接,手写一下最大堆排序,输出列表的中位数

二面

忘了。。

三面

  1. 项目
  2. 设计一个推荐系统
  3. 零钱问题
  4. 一根绳子烧完1min,如何得到52.5s

CBU(北京) 通过

一面

  1. 自我介绍
    她:你算法东西做得不够啊(因为我之前在搜狗,项目是信息流召回,公司的线上模型其实很简单,而且我在公司里其实不怎么碰模型,都是做mapreduce。然后在一家企业做过aiops,但是又和推荐模型不相关)
    我:在企业里主要是做一些规则和数据的事情,模型用的很浅,ctr和召回相关的模型算法我都会,您可以问我
    她:我们需要你实际用企业的数据做过算法研究
  2. 逻辑回归默认数据符合什么分布
  3. 逻辑回归的损失函数是什么
  4. 随机森林有哪些参数进行调试
  5. 介绍lstm的结构
  6. 神经网络训练不收敛怎么做
  7. 写题
  • 写一个线性回归的训练全过程
  • 用pandas写onehot编码(我一直用sklearn的库函数,这里让自己写,我就主要说了下思路)
  • 用sql处理两个表

阿里妈妈 通过

一面

  1. 自我介绍
  2. 问简历
  3. 介绍一下常见的ctr模型
  4. 介绍din的原理
  5. 介绍xgb和gbdt的区别
  6. 随机森林调参经验
  7. python迭代器和生成器的区别
  8. 牛顿法
  9. 常见的优化算法
  10. 常见的激活函数
  11. topk问题

阿里云天基 通过

一面

  1. 自我介绍
  2. 问简历
  3. 介绍对AIops的看法
  4. python多态有了解吗
  5. python内存管理怎么做的
  6. 多进程如何通信
  7. mapreduce的原理
  8. 路由算法有了解吗
  9. 介绍k8s和docker的区别,k8s有哪些常用的组件
  10. 写题
    一共三道题,这次写题写了好久,主要是伯乐网站不好沟通题干

蚂蚁金服国际部 通过

一面

  1. 自我介绍
  2. 问简历
  3. 七层网络分别是啥
  4. 三次握手分别是啥
  5. java python的区别
  6. cpu能否吃满 python
  7. python 闭包
  8. 装饰器
  9. 垃圾回收机制
  10. 生成器/迭代器,流水线任务可否用生成器
  11. 做一道题,数组topk,先写了个快排,然后取arr[:k]

滴滴地图部 日常&暑期 3月

一面

  1. 自我介绍
  2. 介绍graph embedding常用算法
    我讲了deepwalk,line,node2vec和gcn
  3. word2vec 和graph embedding的联系和区别
  4. 会使用spark吗,mapreduce你如何解决数据偏移的问题
  5. 介绍gbdt的流程
  6. gbdt效果为什么好于lr
  7. 讲一下LDA的流程
  8. LDA和SVD有什么联系
  9. 时间序列预测有哪些方式
  10. LSTM和arima的效果比对
  11. 了解模型压缩吗
  12. 介绍下CRF和HMM
  13. 写题:
    (1)10亿数中找到中位数,这些树中重复数字很多
    我用的字典,k是数字,v是出现次数,只对k排序
    (2) 10亿数中找到中位数,重复数字不多
    我当时说的用分治法,后来网上搜了下解决方法,可以参考我的文章

二面

  1. 自我介绍
  2. 实习经历和项目一个一个问,讲原理
  3. gbdt和rf的原理,它们基分类器有什么区别
  4. LDA的原理
  5. 介绍了一下他们的工作。实习和项目过完基本就差不多了,没问太多基础的知识。

京东广告部

一面

  1. 自我介绍
  2. 简历
  3. ctr预估模型
  4. 多gpu训练怎么做
  5. 卷积神经网络pooling 反向传播怎么做的
  6. lstm
  7. 随机森林怎么看特征重要性

二面

  1. 项目
  2. ctr预估模型
  3. 设计模式
  4. c++
  5. 逻辑回归参数初始化可以为0么
  6. 你遇到的人生最大的挑战
  7. 你是什么样的人

美团外卖广告

一面

  1. 介绍项目简历
  2. 写一道题:中序遍历的迭代法实现
  3. 介绍各种ctr模型原理,以及为什么这么改进
  4. 手写fm推导
  5. ctr模型工程实践中特征是怎么样的,如何输入到模型里的
  6. graph embeeding的知识,包括deepwalk,node2vec和gcn等。原理是怎样的,如何具体实现的
  7. deepwalk采样怎么做的,知道哪些采样算法
  8. deepwalk里w2v如何实现的,原理是什么,两种改进思路是什么
  9. 介绍下项目里的自研回归模型

二面

  1. 简历项目深挖
  2. 激活函数有哪些
  3. 优化方法有哪些
  4. rnn和dnn反向传播的区别
  5. sigmod函数如何得到的
  6. lstm用了哪些激活函数,为什么这么用
  7. 为什么用1*1卷机核
  8. 写一道题:旋转数组的二分查找

快手 社区科学部

一二面连着

  1. 写了四道题
  2. 问了问机器学习模型

腾讯新闻

一面

  1. 项目
  2. ctr模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值