【Python基础】第三十三课:混淆矩阵

1.使用LogisticRegression建立模型

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

iris = load_iris()
clf = LogisticRegression()
clf.fit(iris.data, iris.target)

2.计算准确率

👉方法一:

predicted = clf.predict(iris.data)
acc = sum(iris.target == predicted) / len(iris.target)
print("acc = ", acc) #acc =  0.96

👉方法二:

from sklearn.metrics import accuracy_score

acc = accuracy_score(iris.target, predicted)
print("acc = ", acc) #acc =  0.96

但在数据很不平衡时,准确率变得毫无意义。需要使用混淆矩阵来判断模型的性能。

3.建立混淆矩阵

from sklearn.metrics import confusion_matrix

m = confusion_matrix(iris.target, predicted)
print(m)
[[50  0  0]
 [ 0 45  5]
 [ 0  1 49]]

4.可视化呈现混淆矩阵

import seaborn

seaborn.heatmap(m)

5.评估结果

计算查全率、查准率和F1

from sklearn.metrics import classification_report

print(classification_report(iris.target, predicted))
             precision    recall  f1-score   support

          0       1.00      1.00      1.00        50
          1       0.98      0.90      0.94        50
          2       0.91      0.98      0.94        50

avg / total       0.96      0.96      0.96       150

第0行的结果基于混淆矩阵:

50 0
0 100

第1行的结果基于混淆矩阵:

45 5
1 99

第2行的结果基于混淆矩阵:

49 1
5 95

6.代码地址

  1. 混淆矩阵

想要获取最新文章推送或者私聊谈人生,请关注我的个人微信公众号:⬇️x-jeff的AI工坊⬇️

个人博客网站:https://shichaoxin.com

GitHub:https://github.com/x-jeff


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值