文章目录
主要讲单机多卡(单主机多GPUs训练)
使用多卡训练的方式有很多,当然前提是我们的设备中存在多个GPU:使用命令nvidia-smi查看当前Ubuntu平台的GPU数量,其中每个GPU被编上了序号:[0,1,2,3]
0. 显卡编号(什么是主卡)
在默认情况下,标号为0的显卡为主卡,如主机中有4块显卡,那么每张显卡的默认标号为[0,1,2,3]。
如何将其他显卡设置为主卡呢?
通过os.environ["CUDA_VISIBLE_DEVICES"]
指定所要使用的显卡,如:
os.environ["CUDA_VISIBLE_DEVICES"] = "3,2,0,1"
model = torch.nn.DataParallel(model, device_ids=[0,2,3]).cuda()
此时,3号显卡就变成了主卡,在使用torch.nn.DataParallel指定运算显卡时,显卡的对应关系如下:
实际显卡编号----->运算显卡编号
3 -----> 0(主卡)
2 -----> 1
0 -----> 2
1 -----> 3
1. 使用所有存在的显卡
在存在多卡的条件下,最简单的方法是直接使用torch.nn.DataParallel将你的模型wrap一下即可:
net = torch.nn.DataParallel(model)
这时,默认所有存在的显卡都会被使用
2. 指定编号使用显卡
如果有很多显卡(例如我们有4张显卡),但只想使用0、1、2号显卡,那么可以:
net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
或者:
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, [