搬砖篇-- 003 矩阵求逆推论(行列式)

一、 ξ \xi ξ 引论

探讨:通过二阶行列式指4个数组成的符号,如何解线性方程组。
f ( x ) = { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 ( 1 − 1 ) f(x)= \begin{cases} \text{$a_{1 1}x_1+a_{12}x_2=b_1$}\\ \text{$a_{2 1}x_1+a_{22}x_2=b_2$}\end{cases}\qquad (1-1) f(x)={ a11x1+a12x2=b1a21x1+a22x2=b2(11)其中 a i j a_{ij} aij 表示第 i个方程中第 j个未知数的系数, b i b_{i} bi表示第 i个方程的常数项。
思路:用加减消元法来解该方程组,第一、二式分别乘以 a 21 a_{21} a21 a 12 a_{12} a12 ,然后相减,消去未知数 x 2 x_{2} x2 ,得到同理,消去未知数 ,得到:
( a 11 a 22 − a 12 a 21 ) x 1 = a 22 b 1 − a 12 b 2 ( 1 − 2 ) (a_{1 1}a_{22}-a_{12}a_{21})x_1=a_{22}b_1-a_{12}b_2\qquad (1-2) (a11a22a12a21)x1=a22b1a12b2(12)同理,消去 x 1 x_{1} x1
( a 11 a 22 − a 12 a 21 ) x 2 = a 11 b 2 − a 21 b 1 ( 1 − 3 ) (a_{1 1}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-a_{21}b_1\qquad (1-3) (a11a22a12a21)x2=a11b2a21b1(13)当时 a 11 a 22 − a 12 a 21 ≠ 0 时 a_{1 1}a_{22}-a_{12}a_{21}\ne0时 a11a22a12a21=0 ,方程组有唯一解
{ x 1 = a 22 b 1 − a 12 b 2 a 11 a 22 − a 12 a 21 x 2 = a 11 b 2 − a 21 b 1 a 11 a 22 − a 12 a 21 ( 1 − 4 ) \begin{cases} \text{$x_1= \frac{a_{22}b_1-a_{12}b_2}{a_{1 1}a_{22}-a_{12}a_{21}}$}\\ \text{$x_2= \frac{a_{11}b_2-a_{21}b_1}{a_{1 1}a_{22}-a_{12}a_{21}}$} \end{cases}\qquad (1-4) { x1=a11a22a12a21a22b1a12b2x2=a11a22a12a21a11b2a21b1(14)
转换为行列式矩阵 当 D = ∣ x y z v ∣ = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 ( 1 − 5 ) D x = ∣ b 1 a 12 b 2 a 22 ∣ = a 22 b 1 − a 12 b 2 ( 1 − 6 ) D y = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − a 21 b 1 ( 1 − 7 ) 时 当D = \begin{vmatrix} x & y \\ z & v \end{vmatrix}=\begin{vmatrix} a_{1 1}& a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{1 1}a_{22}-a_{12}a_{21}\qquad (1-5)\\ D_x=\begin{vmatrix} b_{1}& a_{12}\\ b_{2} & a_{22} \end{vmatrix}=a_{22}b_{1}-a_{12}b_{2}\qquad (1-6)\\ D_y=\begin{vmatrix} a_{1 1}& b_{1}\\ a_{21} & b_{2} \end{vmatrix}=a_{1 1}b_{2}-a_{21}b_{1}\qquad (1-7)时 D=xzyv=a11a21a12a22=a11a22a12a21(15)Dx=b1b2a12a22=a22b1a12b2(16)Dy=a11a21b1b2=a11b2a21b1(17)
{ x 1 = D x D x 2 = D y D ( 1 − 8 ) \begin{cases} \text{$x_1= \frac{D_x}{D}$}\\ \text{$x_2= \frac{D_y}{D}$}\end{cases}\qquad (1-8) { x1=DDxx2=DDy(18)

二、 ξ \xi ξ 矩阵定义

定义:由 m × n 个数 a i j a_{ij} aij排成的mn列的数表称为mn列的矩阵,简称m × n矩阵。记作:
A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 21 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ∣ ( 2 − 1 ) A=\begin{vmatrix} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21} &a_{21} & \cdots &a_{2n} \\ \vdots&\vdots&&\vdots\\ a_{m1} &a_{m2} & \cdots &a_{mn} \end{vmatrix}\qquad (2-1) A=a11a21am1a12a21am2a1n

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值