矩阵求逆引理(Matrix inversion lemma):
现有矩阵 A A 可以写为如下分块矩阵形式:
矩阵 A A 为 阶方阵,其中 A11 A 11 为 n n 阶非奇异方阵, 为 m m 阶非奇异方阵。那么可以得到: 和 (A22−A21A−111A12) ( A 22 − A 21 A 11 − 1 A 12 ) 都是非奇异矩阵。
引理结论:
A−1=[A−111+A−111A12(A22−A21A−111A12)−1A21A−111−(A22−A21A−111A12)−1A21A−111−A−111A12(A22−A21A−111A12)−1(A22−A21A−111A12)−1] A − 1 = [ A 11 − 1 + A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 − A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 − ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 ]
A−1=[(A11−A12A−122A21)−1−A−122A21(A11−A12A−122A21)−1−