51nod 1459 迷宫游戏 dijkstra变形

51nod 的迷宫问题 其实是dijkstra算法的变形 我们在松弛操作的时候 对于cost值相同的节点 我们需要重新计算一下value值 然后取最大;

用归纳法证明这个问题 :

首先我们先假设 可以到达 k 点的并且到达时间最短的所有点 a1 a2 。。。。。 an(类似的 这些点已经有了cost最小的时候value最大的性质)  对于每一个点 我们在进行松弛操作的时候 必然会对 ai-k来一次松弛 

我们假设的情况是到达k的cost相等 在a1-n的每次松弛操作中对value也进行松弛 就可以得到最大的value ;

由此我们可知假设成立。

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <sstream>
#include <ostream>
#include <stack>
#include <queue>
#include <cmath>
#include <stdlib.h>
#include <ctype.h>
#include <map>
#define inf 1e9+7
using namespace std;
struct node{
    int value=-1;
    int cost=inf;
    int pointvalue;
    int vis=0;
};
node arr[505];
int mat[505][505];
int check(int n)
{
    for(int i=0;i<n;i++)
        if(arr[i].vis==0) return 1;
    return 0;
}
void dijkstra(int start,int end,int n)
{
    int now=start;
    arr[start].vis=1;
    arr[start].value=arr[start].pointvalue;
    arr[start].cost=0;
    for(int i=0;i<n;i++)
    {
        int maxx=inf;
        for(int j=0;j<n;j++)//relaxion
        {
            if(now==j) continue;
            if(arr[now].cost!=inf&&arr[now].cost+mat[now][j]<arr[j].cost)
            {
                arr[j].cost=arr[now].cost+mat[now][j];
                arr[j].value=arr[now].value+arr[j].pointvalue;
            }
            else if(arr[now].cost+mat[now][j]==arr[j].cost)
            {
                arr[j].value=max(arr[j].value,arr[now].value+arr[j].pointvalue);
            }
        }
        for(int j=0;j<n;j++)
        {
            if(now==j) continue;
            if(arr[j].vis==0&&arr[j].cost<maxx)
            {
                maxx=arr[j].cost;
                now=j;
            }
        }
        arr[now].vis=1;
    }
}
int main()
{
    int n,m,start,end;
    cin>>n>>m>>start>>end;
    for(int i=0;i<n;i++)
        cin>>arr[i].pointvalue;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(i==j) mat[i][j]=0;
            else
            mat[i][j]=inf;
        }
    }
    for(int i=0;i<m;i++)
    {
        int l,r,kk;
        cin>>l>>r>>kk;
        mat[l][r]=mat[r][l]=kk;
    }//input
    dijkstra(start,end,n);
    cout<<arr[end].cost<<' '<<arr[end].value;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值