2003,第15届亚太地区数学奥林匹克

a 、 b 、 c a、b、c abc 是某三角形得三条边的边长,且 a + b + c = 1 a+b+c=1 a+b+c=1 .若整数 n ≥ 2 , n\geq2, n2 证明:

a n + b n n + b n + c n n + c n + a n n &lt; 1 + 2 n 2 . \sqrt[n]{a^n+b^n}+\sqrt[n]{b^n+c^n}+\sqrt[n]{c^n+a^n}&lt;1+\frac{\sqrt[n]2}2. nan+bn +nbn+cn +ncn+an <1+2n2 .

\qquad 证明 \qquad a ≥ b ≥ c &gt; 0 a\geq b\geq c&gt;0 abc>0 .
\qquad 因为 a + b + c = 1 a+b+c=1 a+b+c=1,所以,
\qquad ( b + c 2 ) n = b n + c 2 C n 1 b n − 1 + c 2 4 C n 2 b n − 2 + ⋯ + c n 2 n C n n (b+\frac c2)^n=b^n+\frac c2C_n^1b^{n-1}+\frac{c^2}4C_n^2b^{n-2}+\cdots+\frac{c^n}{2^n}C_n^n (b+2c)n=bn+2cCn1bn1+4c2Cn2bn2++2ncnCnn

≥ b n + [ 1 2 C n 1 + ( 1 2 ) 2 C n 2 + ⋯ + ( 1 2 ) n C n n ] c n \qquad\qquad\qquad\geq b^n+[\frac12C_n^1+(\frac12)^2C_n^2+\cdots+(\frac12)^nC_n^n]c^n bn+[21Cn1+(21)2Cn2++(21)nCnn]cn

= b n + [ ( 1 2 + 1 ) n − 1 ] c n \qquad\qquad\qquad=b^n+[(\dfrac12+1)^n-1]c^n =bn+[(21+1)n1]cn.

\qquad 因为 n ≥ 2 n\geq 2 n2,所以, ( 1 2 + 1 ) n − 1 &gt; 1. (\dfrac12+1)^n-1&gt;1. (21+1)n1>1.从而, ( b + c 2 ) n &gt; b n + c n (b+\frac c2)^n&gt;b^n+c^n (b+2c)n>bn+cn.

\qquad b n + c n n &lt; b + c 2 . ⋯ ① \sqrt[n]{b^n+c^n}&lt;b+\dfrac c2.\cdots① nbn+cn <b+2c.

\qquad 同理, a n + c n n &lt; a + c 2 ⋯ ② \sqrt[n]{a^n+c^n}&lt;a+\dfrac c2\cdots② nan+cn <a+2c.

\qquad 又因为 a &lt; 1 2 , b &lt; 1 2 a&lt;\dfrac12,b&lt;\dfrac12 a<21,b<21 , 所以,

\qquad a n + b n n &lt; ( 1 2 ) n + ( 1 2 ) n n = 2 n 2 ⋯ ③ \sqrt[n]{a^n+b^n}&lt;\sqrt[n]{(\frac12)^n+(\frac12)^n}=\frac{\sqrt[n]2}2\cdots③ nan+bn <n(21)n+(21)n =2n2

\qquad ①+②+③得 a n + b n n + b n + c n n + c n + a n n &lt; 1 + 2 n 2 . \sqrt[n]{a^n+b^n}+\sqrt[n]{b^n+c^n}+\sqrt[n]{c^n+a^n}&lt;1+\frac{\sqrt[n]2}2. nan+bn +nbn+cn +ncn+an <1+2n2 .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值