常见机器学习算法(模型)优缺点比较

博客已转移至 https://lmhgithi.github.io/ 内容更全

朴素贝叶斯NB(分类)(生成)

优点

  • 稳定的分类效率

  • 对小规模数据表现很好,能处理多分类任务,适合增量式训练

  • 对缺失数据不太敏感,算法较简单,多用于文本分类

  • 如果满足条件独立假设,NB的收敛速度将快于判别模型如LR,所以只需要少量数据,即使NB条件独立假设不独立,仍然表现很出色。

缺点

  • 需要计算先验概率

  • 分类决策存在错误率

  • 对输入数据的表达形式很敏感

  • (不能学习出特征间的相互作用)

逻辑回归(分类)(判别)

伯努利分布

有很多正则化模型的方法L0,L1,L2等

优点

  • 实现简单

  • 分类时计算量小,速度快,存储资源少

  • 便利的观测样本概率分布

    问题

    可以简单的用L2正则解决多重共线性

缺点

  • 特征空间很大时,逻辑回归性能不太好

  • 容易欠拟合,一般准确率不会太高

  • 不能很好地处理多特征

  • 只能处理二分类(softmax可用于多分类),且必须线性可分。

  • 对于非线性特征,需要进行转换(如核函数)

如果想处理多分类

  • 可以对每个类别都建立一个二分类器,带有这个类别的样本标记1,不带的标记0。

  • softmax回归,即修改LR的损失函数,让其适合多酚类问题,不只考虑1-0的损失,考虑每个样本标记的损失,并且把激活函数替换为softmax函数。

线性回归(回归)(判别)

高斯分布

基本思想是用梯度下降法对最想二乘法形式的误差函数进行优化,也可以用normal
equation直接求解:
在这里插入图片描述

LWLR(局部加权线性回归)
在这里插入图片描述
优点

  • 实现简单,计算简单

缺点

  • 不能拟合非线性数据

GBDT梯度提升决策树(回归)

优点

  1. 可以灵活处理各种类型的数据,包括连续值和离散值。

  2. 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。

  3. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如
    Huber损失函数和Quantile损失函数。

缺点:

  1. 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

决策树(分类、回归)(判别)

Id3、c4.5、cart

信息增益: g ( D , A ) = H ( D ) −

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值