【ML】_02_LR(逻辑回归)


 


 

【一】 LR(Logistic Regression,逻辑回归)

 

【有监督】常用的二分类算法,功能强大,逻辑简单,决策边界   W T X + b = 0 \,\bm {W^TX + b = 0} WTX+b=0

 

  • Softmax 回归退化二分类 情况下的特殊形式,基于 梯度下降 优化算法,需将特征归一化
     
    p   ( y = 1   ∣   x , w ) = 1 1 + e − w T x \bm {\red{p\, ( y = 1 \, | \, x , w )} = \frac { 1 } { 1 + e ^ { - w ^ { T } x } }} p(y=1x,w)=1+ewTx1

 


 

【二】 Softmax 回归(多个 LR 的组合,多分类)

 
p   ( y = k   ∣   x , w ) = e − w k T x ∑ i = 1 K e − w i T x          s . t    y ∈ { 0 , … , k , … , K } \bm {\red{p\,(y=k \, | \, x, w)}=\frac { e ^ { - w _ { k } ^ { T } x } } { \sum _ { i = 1 } ^ { K } e ^ { - w _ { i } ^ { T } x } } } \;\;\;\; s . t \,\, y \in \{ 0 , \ldots , k , \ldots , K\} p(y=kx,w)=i=1KewiTxewkTxs.ty{0,,k,,K}

 


 

【三】 Sigmoid(激活函数)

 

  • 激活函数求导,证明    σ ′ ( z ) = σ ( z ) ( 1 − σ ( z ) ) \,\, σ'(z) = σ(z)(1-σ(z)) σ(z)=σ(z)(1σ(z))
     
    σ ′ ( z ) = ( 1 1 + e − z ) ′ = ( − 1 ) ( 1 + e − z ) ( − 1 ) − 1 ⋅ ( e − z ) ′ \bm \red{\sigma ^ { \prime } ( z )} = ( \frac { 1 } { 1 + e ^ { - z } } ) ^ { \prime } =( - 1 ) ( 1 + e ^ { - z } ) ^ { ( - 1 ) - 1 } \cdot ( e ^ { - z } ) ^ { \prime } σ(z)=(1+ez1)=(1)(1+ez)(1)1(ez)

= 1 ( 1 + e − z ) 2 ( e − z ) = 1 1 + e − z ⋅ e − z 1 + e − z =\frac { 1 } { ( 1 + e ^ { - z } ) ^ { 2 } } ( e ^ { - z } ) = \frac { 1 } { 1 + e ^ { - z } } \cdot \frac { e ^ { - z } } { 1 + e ^ { - z } } =(1+ez)21(ez)=1+ez11+ezez

= 1 1 + e − z ⋅ ( 1 − 1 1 + e − z ) = σ ( z ) ⋅ ( 1 − σ ( z ) ) = \frac { 1 } { 1 + e ^ { - z } } \cdot ( 1 - \frac { 1 } { 1 + e ^ { - z } } )=\bm \red{ \sigma ( z ) \cdot ( 1 - \sigma ( z ) )} =1+ez1(11+ez1)=σ(z)(1σ(z))

 


 

【四】 Cross Entropy Loss(交叉熵损失函数):

 

  • 损失函数
     
    L = − 1 n ∑ x [   y ⋅ l n σ ( z ) + ( 1 − y ) ⋅ l n ( 1 − σ ( z ) )   ] \bm {\red L} = - \frac { 1 } { n } \sum _ { x } [ \, y \cdot ln \sigma (z) + (1-y) \cdot ln(1- \sigma (z)) \, ] L=n1x[ylnσ(z)+(1y)ln(1σ(z))]

 

  • 损失函数求导 l n ( x ) ′ = 1 / x , l n ( 1 − x ) ′ = − 1 / ( 1 − x ) ln(x)' = 1 / x,ln(1-x)' = - 1 / (1-x) ln(x)=1/xln(1x)=1/(1x)

 
∂ L ∂ w i = − 1 n ∑ x [ y σ ( z ) − ( 1 − y ) 1 − σ ( z ) ]   ∂ σ ∂ w i = − 1 n ∑ x [ y σ ( z ) − ( 1 − y ) 1 − σ ( z ) ]   σ ′ ( z ) x i \bm \red {\frac { \partial L } { \partial w _ { i } } }= - \frac { 1 } { n } \sum _ { x } [ \frac { y } { \sigma ( z ) } - \frac { ( 1- y ) } { 1-\sigma ( z ) } ] \, \frac { \partial \sigma } { \partial w _ { i } } = - \frac { 1 } { n } \sum _ { x } [ \frac { y } { \sigma ( z ) } - \frac { ( 1- y ) } { 1-\sigma ( z ) } ] \, \sigma ^ { \prime } ( z ) x _ { i } wiL=n1x[σ(z)y1σ(z)(1y)]wiσ=n1x[σ(z)y1σ(z)(1y)]σ(z)xi

= 1 n ∑ x σ ′ ( z ) x i σ ( z ) ( 1 − σ ( z ) ( σ ( z ) − y ) = 1 n ∑ x x i ( σ ( z ) − y ) = \frac { 1 } { n } \sum _ { x } \frac { \sigma ^ { \prime } ( z ) x _ { i } } { \sigma ( z ) ( 1 - \sigma ( z ) } ( \sigma ( z ) - y )= \bm \red {\frac { 1 } { n } \sum _ { x } x _ { i } ( \sigma ( z ) - y )} =n1xσ(z)(1σ(z)σ(z)xi(σ(z)y)=n1xxi(σ(z)y)
∂ L ∂ b = 1 n ∑ x ( σ ( z ) − y ) \bm \red {\frac { \partial L } { \partial b } }= \bm \red {\frac { 1 } { n } \sum _ { x } ( \sigma ( z ) - y )} bL=n1x(σ(z)y)

 


 

【五】 应用场景

 

  • 货款违约(会 / 不会),广告点击(点 / 不点),商品推荐(买 / 不买),情感分析(正面 / 负面),疾病诊断(阴 / 阳)

 


 

【六】 LR 代码使用(Sklearn)

 

from sklearn.linear_model.logistic import LogisticRegression
'''
:param (参数) 一般默认就行了
'''
lr = LogisticRegression()
'''
:object (方法)
lr.fit(X,y): LR 是有监督的机器学习算法
lr.predict(X): 返回数据 X 预测的类别
'''
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值