kears保存模型

kears保存 模型

kears保存模型时可以配合回调函数(callback)的方法,在每一次batch(应该是batch)中,保留最佳的模型参数,常见的模型类型有两种,一种是ckpt,另一种是h5。

保存h5模型

首先得保证安装了HDF5 和 Python 库 h5py
保存整个模型

model.save('mode.h5')

将 Keras 模型保存到单个 HDF5 文件中,该文件将包含
模型的结构,允许重新创建模型
模型的权重
训练配置项(损失函数,优化器)
优化器状态,允许准确地从你上次结束的地方继续训练。
重新加载模型

model = load_model('my_model.h5')

保存模型的权重

model.save_weights('my_mode.h5')

重新加载模型权重

model_1.load_weights('my_model_weights.h5') #加载模型的权重,保存权重的网络要和加载权重的网络完全相同

保存ckpt模型

保存模型

save_file = './model/my_model.ckpt'
cp_callback = keras.callbacks.ModelCheckpoint(filepath=save_file,
                                                  save_weights_only=True,
    											#设置True,则调用model.save_weights();
                             #设置False,则调用model.save();
                                                  save_best_only=True)
history = model.fit(trainX, trainY, epochs=10, batch_size=batch_size,
                            validation_data=(testX, testY),
                            verbose=2, shuffle=False,
                            callbacks=[cp_callback])

加载模型

 
 
with tf.Session() as sess:
    #恢复计算图结构
    saver = tf.train.import_meta_graph(',my_model.ckpt.meta')
 
     #恢复所有变量信息
    saver.restore(sess, "my_model.ckpt")

保存PB模型

保存模型

# 保存模型结构和参数到文件
import keras
keras.models.save_model(network,"model_save_path") # 默认生成 .pb 格式模型,也可以通过save_format 设置 .h5 格式

加载模型

import keras
network=keras.models.load_model("model_save_path")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值