spfa 算法详解

16 篇文章 1 订阅

适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。

算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

 

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

 

实现方法:

  建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。

判断有无负环:
  如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

 


 

 

 

首先建立起始点a到其余各点的
最短路径表格

                                 

首先源点a入队,当队列非空时:
 1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

                                 

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

                                

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

                                

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f

 队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

 

 

                              

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:


                               

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

                          

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

 

                         

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

                        

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

program:

#include<cstdio>
using namespace std;
struct node
{int x;
 int value;
 int next;
};
node e[60000];
int visited[1505],dis[1505],st[1505],queue[1000];
int main()
{
  int n,m,u,v,w,start,h,r,cur;
  freopen("c.in","r",stdin);
  freopen("c.out","w",stdout);
  while(scanf("%d%d",&n,&m)!=EOF)
  {
    for(int i=1;i<=1500;i++)
      {visited[i]=0;
       dis[i]=-1;
       st[i]=-1;  //这个初始化给下边那个while循环带来影响
      }
 
   for(int i=1;i<=m;i++)
      {
       scanf("%d%d%d\n",&u,&v,&w);    
       e[i].x=v;            //记录后继节点    相当于链表中的创建一个节点,并使得数据域先记录
       e[i].value=w;
       e[i].next=st[u];     //记录顶点节点的某一个边表节点的下标,相当于在链表中吧该边表节点的next指针先指向他的后继边表节点
       st[u]=i;                //把该顶点的指针指向边表节点,相当于链表中的插入中,头结点的指针改变
      }
    start=1;
    visited[start]=1;
    dis[start]=0;
    h=0;
    r=1;
    queue[r]=start;
    while(h!=r)
     {

      h=(h+1)%1000;
      cur=queue[h];
      int tmp=st[cur];
      visited[cur]=0;
    

     while(tmp!=-1)
        {
            if (dis[e[tmp].x]<dis[cur]+e[tmp].value)            //改成大于号才对
            {
                   dis[e[tmp].x]=dis[cur]+e[tmp].value;
                    if(visited[e[tmp].x]==0)
                      {

                           visited[e[tmp].x]=1;
                           r=(r+1)%1000;
                            queue[r]=e[tmp].x;
                       }
            }
         tmp=e[tmp].next;     
        }
     }
    printf("%d\n",dis[n]);
  }
  return 0;  
}



    SPFA(Shortest Path Faster Algorithm) [图的存储方式为邻接表]
    是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算。
    算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素,
    并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。
    它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径,可以处理负边。
    SPFA 在形式上和BFS非常类似,不同的是BFS中一个点出了队列就不可能重新进入队列,但是SPFA中
    一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本
    身被改进,于是再次用来改进其它的点,这样反复迭代下去。
    判断有无负环:如果某个点进入队列的次数超过V次则存在负环(SPFA无法处理带负环的图)。
    SPFA算法有两个优化算法 SLF 和 LLL:
    SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首,
    否则插入队尾。
    LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入
    到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。
    引用网上资料,SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。
    在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。
    */ 
     
    //用数组实现邻接表存储,pnt[i,0]表示与i相邻的结点个数,pnt[i,1...k]存储与i相邻的点 
    int  pnt[MAXN][MAXN]; 
    int  map[MAXN][MAXN]; //map[i,j]为初始输入的i到j的距离,并且map[i,i]=0;未知的map[i,j]=INF; 
    int  dis[MAXN]; 
    char vst[MAXN]; 
     
    int SPFA(int n,int s) 
    { 
        int i, pri, end, p, t; 
        memset(vst, 0, sizeof(vst)); 
        for (i=1; i<=n; i++) 
            dis[i] = INF; 
        dis[s] = 0; 
        vst[s] = 1; 
        Q[0] = s; pri = 0; end = 1; 
        while (pri < end) 
        { 
            p = Q[pri]; 
            for (i=1; i<=pnt[p][0]; i++) 
            { 
                t = pnt[p][i]; 
                //先释放,释放成功后再判断是否要加入队列 
                if (dis[p]+map[p][t] < dis[t]) 
                { 
                    dis[t] = dis[p]+map[p][t]; 
                    if (!vst[t]) 
                    { 
                        Q[end++] = t; 
                        vst[t] = 1; 
                    } 
                } 
            } 
            vst[p] = 0; 
            pri++; 
        } 
        return 1; 
    }  

    /* 
    SPFA(Shortest Path Faster Algorithm) [图的存储方式为邻接表] 
    是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算。 
    算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素, 
    并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。 
    它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径,可以处理负边。 
     
    SPFA 在形式上和BFS非常类似,不同的是BFS中一个点出了队列就不可能重新进入队列,但是SPFA中 
    一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本 
    身被改进,于是再次用来改进其它的点,这样反复迭代下去。 
     
    判断有无负环:如果某个点进入队列的次数超过V次则存在负环(SPFA无法处理带负环的图)。 
     
    SPFA算法有两个优化算法 SLF 和 LLL: 
    SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首, 
    否则插入队尾。 
    LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入 
    到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。 
    引用网上资料,SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。 
    在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。 
    */  
      
    //用数组实现邻接表存储,pnt[i,0]表示与i相邻的结点个数,pnt[i,1...k]存储与i相邻的点  
    int  pnt[MAXN][MAXN];  
    int  map[MAXN][MAXN]; //map[i,j]为初始输入的i到j的距离,并且map[i,i]=0;未知的map[i,j]=INF;  
    int  dis[MAXN];  
    char vst[MAXN];  
      
    int SPFA(int n, int s)  
    {  
        int i, pri, end, p, t;  
        memset(vst, 0, sizeof(vst));  
        for (i=1; i<=n; i++)  
            dis[i] = INF;  
        dis[s] = 0;  
        vst[s] = 1;  
        Q[0] = s; pri = 0; end = 1;  
        while (pri < end)  
        {  
            p = Q[pri];  
            for (i=1; i<=pnt[p][0]; i++)  
            {  
                t = pnt[p][i];  
                //先释放,释放成功后再判断是否要加入队列  
                if (dis[p]+map[p][t] < dis[t])  
                {  
                    dis[t] = dis[p]+map[p][t];  
                    if (!vst[t])  
                    {  
                        Q[end++] = t;  
                        vst[t] = 1;  
                    }  
                }  
            }  
            vst[p] = 0;  
            pri++;  
        }  
        return 1;  
    }  

    正规邻接表存储: 
    /* ------- 邻接表存储 ----------- */ 
    struct Edge 
    { 
        int e;  //终点 
        int v;  //边权 
        struct Edge *nxt; 
    }; 
    struct 
    { 
        struct Edge *head, *last; 
    } node[MAXN]; 
    /* -------------------------------- */ 
     
    /*  添加有向边<起点,终点,边权>  */ 
    void add(int s,int e,int v) 
    { 
        struct Edge *p; 
        p = (struct Edge*)malloc(sizeof(struct Edge)); 
        p->e = e; 
        p->v = v; 
        p->nxt = NULL; 
        if (node[s].head == NULL) 
        { 
            node[s].head = p; 
            node[s].last = p; 
        } 
        else 
        { 
            node[s].last->nxt = p; 
            node[s].last = p; 
        } 
    } 
     
    /*  松弛,成功返回1,否则0  */ 
    int relax(int s,int e,int v) 
    { 
        if (dis[s]+v < dis[e]) 
        { 
            dis[e] = dis[s]+v; 
            return 1; 
        } 
        return 0; 
    } 
     
    /*  SPFA有负权回路返回0,否则返回1并且最短路径保存在dis[]  */ 
    int n; 
    int vst[MAXN], cnt[MAXN]; 
    int Q[MAXN*MAXN]; 
    int SPFA(int s0) 
    { 
        int i, p, q; 
        struct Edge *pp; 
     
        memset(vst, 0, sizeof(vst)); 
        memset(cnt, 0, sizeof(cnt)); 
        for (i=0; i<=n; i++) 
            dis[i] = INF; 
        dis[s0] = 0; 
     
        Q[0] = s0; p = 0; q = 1; 
        vst[s0] = 1; 
        cnt[s0]++; 
        while (p < q) 
        { 
            pp = node[Q[p]].head; 
            while (pp) 
            { 
                if (relax(Q[p], pp->e, pp->v) && !vst[pp->e]) 
                { 
                    Q[q++] = pp->e; 
                    vst[pp->e] = 1; 
                    cnt[pp->e]++; 
                    if (cnt[pp->e] > n) //有负权回路 
                        return 0; 
                } 
                pp = pp->nxt; 
            } 
            vst[Q[p]] = 0; 
            p++; 
        } 
        return 1; 
    }  

    正规邻接表存储:  
    /* ------- 邻接表存储 ----------- */  
    struct Edge  
    {  
        int e;  //终点  
        int v;  //边权  
        struct Edge *nxt;  
    };  
    struct  
    {  
        struct Edge *head, *last;  
    } node[MAXN];  
    /* -------------------------------- */  
      
    /*  添加有向边<起点,终点,边权>  */  
    void add(int s, int e, int v)  
    {  
        struct Edge *p;  
        p = (struct Edge*)malloc(sizeof(struct Edge));  
        p->e = e;  
        p->v = v;  
        p->nxt = NULL;  
        if (node[s].head == NULL)  
        {  
            node[s].head = p;  
            node[s].last = p;  
        }  
        else  
        {  
            node[s].last->nxt = p;  
            node[s].last = p;  
        }  
    }  
      
    /*  松弛,成功返回1,否则0  */  
    int relax(int s, int e, int v)  
    {  
        if (dis[s]+v < dis[e])  
        {  
            dis[e] = dis[s]+v;  
            return 1;  
        }  
        return 0;  
    }  
      
    /*  SPFA有负权回路返回0,否则返回1并且最短路径保存在dis[]  */  
    int n;  
    int vst[MAXN], cnt[MAXN];  
    int Q[MAXN*MAXN];  
    int SPFA(int s0)  
    {  
        int i, p, q;  
        struct Edge *pp;  
      
        memset(vst, 0, sizeof(vst));  
        memset(cnt, 0, sizeof(cnt));  
        for (i=0; i<=n; i++)  
            dis[i] = INF;  
        dis[s0] = 0;  
      
        Q[0] = s0; p = 0; q = 1;  
        vst[s0] = 1;  
        cnt[s0]++;  
        while (p < q)  
        {  
            pp = node[Q[p]].head;  
            while (pp)  
            {  
                if (relax(Q[p], pp->e, pp->v) && !vst[pp->e])  
                {  
                    Q[q++] = pp->e;  
                    vst[pp->e] = 1;  
                    cnt[pp->e]++;  
                    if (cnt[pp->e] > n) //有负权回路  
                        return 0;  
                }  
                pp = pp->nxt;  
            }  
            vst[Q[p]] = 0;  
            p++;  
        }  
        return 1;  
    }  

    /**通过poj 3159 证明:还是用数组来实现邻接表比用链表来实现邻接表效率高,  **/ 
     
    #define MAX_node 10000 
    #define MAX_edge 100000 
     
    struct Edge 
    { 
        int e, v; 
    } edge[MAX_edge]; 
     
    int neg;    //number of edge 
    int node[MAX_node];  //注意node要用memset初始化全部为-1 
    int next[MAX_edge]; 
     
    void add(int s,int e,int v) 
    { 
        edge[neg].e = e; 
        edge[neg].v = v; 
        next[neg] = node[s]; 
        node[s] = neg++; 
    } 
    /*  该题还证明用栈来实现SPFA比用队列来实现效率高,还节约空间 */ 
    int SPFA(int s0)//栈实现 
    { 
        int i, t, p, top; 
     
        memset(vst, 0, sizeof(vst)); 
        for (i=1; i<=n; i++) 
            dis[i] = INF; 
        dis[s0] = 0; 
     
        Q[0] = s0; 
        top = 1; 
        vst[s0] = 1; 
        while (top) 
        { 
            t = Q[--top]; 
            vst[t] = 0; 
            p = node[t]; 
            while (p != -1) 
            { 
                if (relax(t, edge[p].e, edge[p].v) && !vst[edge[p].e]) 
                { 
                    Q[top++] = edge[p].e; 
                    vst[edge[p].e] = 1; 
                } 
                p = next[p]; 
            } 
        } 
        return 1; 
    } 





  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值