HDU 4734 F(x) (数位DP)

9 篇文章 3 订阅



F(x)

Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4862    Accepted Submission(s): 1803


Problem Description
For a decimal number x with n digits (A nA n-1A n-2 ... A 2A 1), we define its weight as F(x) = A n * 2 n-1 + A n-1 * 2 n-2 + ... + A 2 * 2 + A 1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
 

Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 10 9)
 

Output
For every case,you should output "Case #t: " at first, without quotes. The  t is the case number starting from 1. Then output the answer.
 

Sample Input
  
  
3 0 100 1 10 5 100
 

Sample Output
  
  
Case #1: 1 Case #2: 2 Case #3: 13
 

Source
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:   5981  5980  5979  5978  5977 

题意:我们定义十进制数x的权值为f(x) = a(n)*2^(n-1)+a(n-1)*2(n-2)+...a(2)*2+a(1)*1,a(i)表示十进制数x中第i位的数字。

题目给出a,b,求出0~b有多少个不大于f(a)的数。

思路:一开始写了一个很裸的数位dp,看每组数据0-b里面多少个比a少的。。。这样只是这一组记忆化。。超时了,然后我想是不是要记忆所有的fa呢。。然后把dp数组变成三维了。。。mle了。。。后来才知道,直接二维数组,dp[i][j] i表示位数,j表示在i位这里比j小的数量有多少。。。

tle代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int r;
int bit[15], p[10] = {0,1, 2, 4, 8, 16, 32, 64, 128,256}, dp[10][2500];
int dfs(int len, int sum, int limit)
{
    if(len < 1) return sum < r || sum == r;
    if(sum > r) {dp[len][sum] = 0; return 0;}
    if(!limit && dp[len][sum] != -1) return dp[len][sum];
    int last = limit ? bit[len] : 9;
    int ans = 0;
    for(int i = 0; i <= last; i++)
    {
        int tsum = sum + i * p[len];
        ans += dfs(len-1, tsum, limit && i == last);
    }
    if(!limit) dp[len][sum] = ans;
    return ans;
}
int cal(int n)
{
    int k = 0;
    while(n)
    {
        bit[++k] = n % 10;
        n /= 10;
    }
    return dfs(k, 0, 1);
}
int main()
{
    int t, Case = 0;
    scanf("%d", &t);
    while(t--)
    {
        memset(dp, -1, sizeof(dp));
        int a, b;
        scanf("%d%d", &a ,&b);
        int k = 1;
        r = 0;
        while(a)
        {
            r += a%10*p[k++];
            a /= 10;
        }
       // cout << r << endl;
        printf("Case #%d: %d\n", ++Case, cal(b));
    }
    return 0;
}
mle代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int r;
int bit[15], p[9] = {0,1, 2, 4, 8, 16, 32, 64, 128}, dp[10][3000][3000];
int dfs(int len, int sum, int r, int limit)
{
    if(len < 1) return sum < r || sum == r;
    if(!limit && dp[len][sum][r] != -1) return dp[len][sum][r];
    int last = limit ? bit[len] : 9;
    int ans = 0;
    for(int i = 0; i <= last; i++)
    {
        int tsum = sum + i * p[len];
        ans += dfs(len-1, tsum, r, limit && i == last);
    }
    if(!limit) dp[len][sum][r] = ans;
    return ans;
}
int cal(int n)
{
    int k = 0;
    while(n)
    {
        bit[++k] = n % 10;
        n /= 10;
    }
    return dfs(k, 0, r, 1);
}
int main()
{
    int t, Case = 0;
    memset(dp, -1, sizeof(dp));
    scanf("%d", &t);
    while(t--)
    {
        int a, b;
        scanf("%d%d", &a ,&b);
        int k = 1;
        r = 0;
        while(a)
        {
            r += a%10*p[k++];
            a /= 10;
        }
       // cout << r << endl;
        printf("Case #%d: %d\n", ++Case, cal(b));
    }
    return 0;
}
正解:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int r;
int bit[20], p[10] = {0,1, 2, 4, 8, 16, 32, 64, 128,256}, dp[20][200000];
int dfs(int len, int sum, int limit)
{
    if(len < 1) return sum >= 0;
    if(sum < 0) return 0;
    if(!limit && dp[len][sum] != -1) return dp[len][sum];
    int last = limit ? bit[len] : 9;
    int ans = 0;
    for(int i = 0; i <= last; i++)
    {
        ans += dfs(len-1, sum - i*p[len], limit && i == last);
    }
    if(!limit) dp[len][sum] = ans;
    return ans;
}
int cal(int n)
{
    int k = 0;
    while(n)
    {
        bit[++k] = n % 10;
        n /= 10;
    }
    return dfs(k, r, 1);
}
int main()
{
    int t, Case = 0;
    scanf("%d", &t);
    memset(dp, -1, sizeof(dp));
    while(t--)
    {
        int a, b;
        scanf("%d%d", &a ,&b);
        int k = 1, len = 0;
        r = 0;
        while(a)
        {
            r += a%10*(1<<len);
            len++;
            a /= 10;
        }
       // cout << r << endl;
        printf("Case #%d: %d\n", ++Case, cal(b));
    }
    return 0;
}


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值