最小二乘法原理理解

概念:最小二乘法是一种熟悉而优化的方法。主要是通过最小化误差的平方以及最合适数据的匹配函数。
作用:(1)利用最小二乘法可以得到位置数据(这些数据与实际数据之间误差平方和最小)(2)也可以用来曲线拟合

实例讲解:有一组数据(1,6),(3,5),(5,7),(6,12),要找出一条与这几个点最为匹配的直线 : y = A + Bx

有如下方程:

6 = A + B

5 = A + 3B

7 = A + 5B

12 = A + 6B

很明显上面方程是超定线性方程组,要使左边和右边尽可能相等;采用最小二乘法:

L(A,B)=[6-(A + B)]^2 + [5-(A + 3B)]^2 + [7-(A + 5B)]^2 +[12-(A + 6B)]^2使得L的值最小:这里L是关于A,B的函数;那么我们可以利用对A,B求偏导,进而求出A,B的值使得Lmin

这里写图片描述

这里写图片描述

B = -0.064 A = 8.832

y = 8.832 - 0.064*x:也就是说这条直线是最佳的。求得最适合数学模型,然后可以更加准确预测数据。

将一个可能的、对不相关变量A的构成都无困难的函数类型称作函数模型如抛物线函数或指数函数;参数B是为了使所选择的函数模型同观测值y相匹配。在一般情况中,观测值远多于所选的的参数个数。

在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2…xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

怎么样来衡量拟合的效果呢?。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差(有固定的变异数),围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。此处引用讲解更详细

函数表示:

这里写图片描述

还有欧几里得度量:

这里写图片描述

这里写图片描述



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值